• 제목/요약/키워드: discharge resistance

검색결과 497건 처리시간 0.027초

충방전 온도에 따른 $LiM_{y}Mn_{2-y}O_{4}$정극 활물질의 임피던스 특성 분석 (The AC impedance of $LiM_{y}Mn_{2-y}O_{4}$cathode material by charge and discharge temperature)

  • 정인성;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 추계학술대회 논문집
    • /
    • pp.351-354
    • /
    • 2000
  • AC impedance of LiM $n_2$ $O_4$ and LiM $g_{0.1}$M $n_{1.9}$ $O_4$ samples have been studied at various temperature with charge-discharge test. AC impedance of LiM $n_2$ $O_4$ measured at -2$0^{\circ}C$, room temperature and 5$0^{\circ}C$ revealed that initial impedance before charge-discharge test was gradually decreased and become small by becoming law temperature. It indicates that the Li ion diffusion and the transfer resistance of the cathode are related to the temperature of cycling. Impedance at high temperature was suddenly increased because Mn dissolution and decomposition of electrolyte had been increased during cycling, compared to impedance at low temperature. Therefore, charge-discharge capacity was suddenly decreased at high but was slowly at low. In LiM $g_{0.1}$M $n_{1.9}$ $O_4$, impedance and capacity were stability at room temperature than there at 5$0^{\circ}C$, too. Initial impedance at 5$0^{\circ}C$ before charge-discharge test was small and impedance was suddenly increased during cycling than that at room temperature.ure.ure.

  • PDF

정전기 방전에 의한 전자계 복사의 특성 해석 (Property analysis of electromagnetic fields radiated by electrostatic discharge)

  • 강인호
    • 전자공학회논문지D
    • /
    • 제34D권12호
    • /
    • pp.1-7
    • /
    • 1997
  • Serious troubles may occur in electromagnetic equipments due to electrostatic discharge (ESD). The number of the damaging incidents are significantly increasing with the increased use of integrated semiconductor elements with loer operation pwoer. In order to examine the phenomena theoretically, this paper anlyzes properties of the transient electromagnetic fields rdiated by ESD. A new model is presented using the Rompe-weizel formula for the spark resistance. The numerical results of ESD fields are compared with the experimental data that were given by wilson-Ma.

  • PDF

낙동강 하구 호석에 관한 조사연구(I)- 낙동강의 조위변동 - (A study on the tidal phenomena of Nagdong River-mouth - Tidal fluctuations of Nagdong River -)

  • 양윤모;김탁부
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 1982년도 제24회 수공학 연구발표회 논문초록집
    • /
    • pp.3-24
    • /
    • 1982
  • The relations between tidal fluctuation and freshwater discharge are stuied dy use of observed data in the estuarine region of the Nagdong Rivre. Damping modulus which represents the resistance to propagation of tidal wave is estimated, and it is verified that when the fresh water discharge is lower than 300 m/sec., the elevation of mean-water-level at Gupo is the same as mean sea-water-level.

  • PDF

HCD이온플레이팅 방법을 이용한 zzTiC코팅에 관한 연구 (A Study on the TiC Coating Using Hollow Cathode Discharge Ion Plating)

  • 김인철;서용운;황기웅
    • 대한전기학회논문지
    • /
    • 제41권8호
    • /
    • pp.875-882
    • /
    • 1992
  • Titanium carbide(TiC) films, known as having excellent characteristics of resistance to wear and corrosion, were deposited on SUS-304 sheets using HCD(Hollow Cathode Discharge) reactive ion plating with acetylene gas as the reactant gas. The characteristics of TiC films were examined by X-ray diffraction, micro-Vickers hardness tester, ${\alpha}$-step, SEM(Scanning Electron Spectroscopy), ESCA(Electron Spectroscopy for Chemical Analysis), and AES(Auger Electron Spectroscopy) and the results were discussed with regard to the changes of various deposition conditions(bias voltage, acetylene flow rate, temperature).

고주파 점등 형광램프의 비선형 저항 모델에 관한 연구 (A Study on the Nonlinear Resistance Model of a F/L Operating in High Frequency)

  • 지철근;장우진
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제1권2호
    • /
    • pp.49-56
    • /
    • 1987
  • 에너지 절약을 위하여 방전등을 고조파 전원으로 동작시킨다. 방전등을 포함한 고조파 전원 회로를 설계할 경우, 램프의 특성을 알아야하며, 이에 많은 방법과 수식 모델이 제안되고 있다. 본 연구에서는, 에너지 절약 효과가 큰, 형광램프의 전압-전류 특성을 나타내기 위하여, 비선형 저항 모델을 제안하고, 이를 인덕터 및 커패시터 안정기를 사용한 회로에 적용, 그 유용성을 검증하였다. 이 수식 모델은 다른 모델과는 달리 비교적 쉽게 얻을 수 있다. 또한, 비교를 위하여, 수정된Francis 방정식을 이용한 방법을 검사하였다. 본 연구에 사용된 방법은 기본적으로 다른 방전등에도 적용이 될 수 있다. 결과로서, 1) 3차 다항식의 비선형 저항 모델로 좋은 결과를 얻을 수 있다. 2) 고조파 점등시, 상수 계수를 사용하는 수정된 Francis 방정식은 적용할 수 없다.

  • PDF

탄소 피막 가변 저항기의 접동 잡음 감소에 관한 연구 (A Study on Decreasing of Sliding Noise of a Carbon Film Variable Resistor)

  • 윤재강
    • 대한전자공학회논문지
    • /
    • 제20권1호
    • /
    • pp.50-54
    • /
    • 1983
  • 민생용 전자기기에서 가장 많이 사용되고 있는 부품중의 하나인 탄소 피막 가변 저항기에서 접동자 이동시 발생하는 접촉 저항 변화의 원인을 분석하여 이에 대한 감소, 즉 접동 잡음 감소를 위한 몇 가지 방법을 착안하여 실험 검토하고 그 결과을 정리하여 본 결과 균일한 크기를 가진 탄소 분말 입자로서 고루게 배합된 저항액을 사용하고 접동자의 접촉점과 압력을 증가하면 접촉 저항 및 접촉 저항 변화. 즉 잠동 잡음을 감소시킬 수 있다.

  • PDF

알루미늄으로 제작된 심해 장비의 부식 저항 능력 향상 방법 및 측정 방법 조사 (Study on Methods of Enhancement and Measurement of Corrosion Resistance for Subsea Equipment made of Aluminum)

  • 서영균;정정열
    • 플랜트 저널
    • /
    • 제16권3호
    • /
    • pp.47-52
    • /
    • 2020
  • 본 연구에서는 알루미늄으로 제작된 심해 장비의 부식 저항 능력 향상시키기 위해 알루미늄 부식 방지 방법과 측정방법을 조사하였다. 조사된 부식 방지 방법은 Cathodic Protection(음극화 보호), Conversion Coating, Anodizing, 및 Organic Coating이었다. 그리고 간단하게 조사된 측정 방법은 Scanning Electron Microscope (SEM), Electrochemical Impedance Spectroscopy (EIS), Glow discharge optical emission spectrum spectroscopy (GD-OES), Fourier Transform Infrared Spectroscopy (FT-IR), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS), Scanning Vibrating Electrode Technique (SVET), Contact Angle(접촉각), Interfacial Tension (경계면 장력)이었다. 알루미늄 부식을 방지하기 위해 널리 사용되는 방법은 Anodizing과 Organic Coating이었으며, 부식 측정을 위해서는 여러 방법들이 골고루 사용되었다. 그 중 많이 사용되는 방법은 표면의 구조를 관찰하 위한 SEM과 부식 저항 능력을 측정하기 위한 접촉각 측정이었다.

Ni-MH 2차 전지의 상온 및 저온 전극특성 최적화를 위한 첨가제 및 전해질 설계 (Design of Additives and Electrolyte for Optimization of Electrode Characteristics of Ni-MH Secondary Battery at Room and Low Temperatures)

  • 양동철;박충년;박찬진;최전;심종수;장민호
    • 한국수소및신에너지학회논문집
    • /
    • 제18권4호
    • /
    • pp.365-373
    • /
    • 2007
  • We optimized the compositions of electrolyte and additives for anode in Ni-MH battery to improve the electrode characteristics at ambient and low temperatures using response surface method(RSM). Among various additives for anode, PTFE exhibited the greatest influence on the discharge capacity of the anode. Through response optimization process, we found the optimum composition of the additives to exhibit the greatest discharge capacity. When the amount of additives was too small, the anode was degraded with time due to the low binding strength among alloy powders and the resultant separation of powders from the current collector. In contrast, the addition of large amount of the additives increased in the resistance of the electrode. In addition, the discharge capacity of the anode at $-18^{\circ}C$ increased with decreasing the concentration of KOH, NaOH and LiOH in design range of electrolyte. The resistance and viscosity of electrolyte appear to affect the discharge capacity of the anode at low temperature.

Numerical and Experimental Studies on the Fluidic Characteristics and Performance of Liner-type Microtube

  • Kim, Jin Hyun;Woo, Man Ho;Kim, Dong Eok
    • Journal of Biosystems Engineering
    • /
    • 제42권1호
    • /
    • pp.1-11
    • /
    • 2017
  • Purpose: Methods: Three-dimensional CFD modeling was conducted to analyze the flow structure and discharge flow rate corresponding to the variation in the geometry of the flow channel in a microtube. Additionally, experiments were carried out, and the discharge flow rate was measured at various inlet pressures and inclination angles of the microtube. Results: The quantitative data of velocity distribution and discharge flow rate were obtained. As the width and length of the microtip increased, the discharge flow rate decreased significantly because of the increase in the loss of pressure along the microtube. As the depth of the microtip increased, the flow rate also increased because of the reduction in the flow resistance. However, in this analysis, the variation in the angle of the microtip did not influence the flow rate. From the experimental results, it was observed that the flow rate increased linearly with the increase in the inlet pressure, and the effects of the inclination angle were not clearly observed in those test cases. The values of the flow rate obtained from the experiments were significantly lower than that obtained from the CFD analysis. This is because of the distortion of the shape of the flow path inside the microtube during the fabrication process. The distortion of the flow path might decrease the flow cross-sectional area, and it would increase the flow resistance inside the microtube. The variation in the flow rate corresponding to the variation in the inlet pressure showed similar trends. Conclusions: Therefore, the results of the numerical analysis obtained from this study can be efficiently utilized for optimizing the shape of the microtip inside a microtube.

Degradation Mechanisms of a Li-S Cell using Commercial Activated Carbon

  • Norihiro Togasaki;Aiko Nakao;Akari Nakai;Fujio Maeda;Seiichi Kobayashi;Tetsuya Osaka
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권4호
    • /
    • pp.361-368
    • /
    • 2023
  • In lithium-sulfur (Li-S) batteries, encapsulation of sulfur in activated carbon (AC) materials is a promising strategy for preventing the dissolution of lithium polysulfide into electrolytes and enhancing cycle life, because instead of solid-liquid-solid reactions, quasi-solid-state (QSS) reactions occur in the AC micropores. While a high weight fraction of sulfur in S/AC composites is essential for achieving a high energy density of Li-S cells, the deterioration mechanisms under such conditions are still unclear. In this study, we report the deterioration mechanisms during charge-discharge cycling when the discharge products overflow from the AC. Analysis using scanning electron microscopy and energy-dispersive X-ray spectrometry confirms that the sulfur in the S/AC composites migrates outside the AC as cycling progresses, and it is barely present in the AC after 20 cycles, which corresponds to the capacity decay of the cell. Impedance analysis clearly shows that the electrical resistance of the S/AC composite and the charge-transfer resistance of QSS reactions significantly increase as a result of sulfur migration. On the other hand, the charge-discharge cycling performance under limited-capacity conditions, where the discharge products are encapsulated inside the AC, is extremely stable. These results reveal the degradation mechanism of a Li-S cell with micro-porous carbon and provide crucial insights into the design of a S/AC composite cathode and its operating conditions needed to achieve stable cycling performance.