• Title/Summary/Keyword: discharge flow

Search Result 2,053, Processing Time 0.026 seconds

Discharge Area Characteristics of Ozonizer with $Al_2O_3$ Dielectric ($Al_2O_3$ 세라믹 유전체 오존발생기의 방전면적 특성)

  • Park, Hyun-Mi;Song, Hyun-Jig;Lee, Sang-Gun;Lim, Chang-Ho;Yoon, Bung-Han;Kim, Jong-Hyun;Lee, Kwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2005.07c
    • /
    • pp.2214-2216
    • /
    • 2005
  • This paper is researched discharge and ozone generation characteristics of ozonizer using $Al_2O_3$ Ceramic dielectric. The discharge characteristics with variation of the discharge electrode area is studied. The characteristics of ozone concentration. ozone generation and ozone yield were measured to discharge power, discharge electrode area and supplied gas flux for oxygen and air. The solubility of ozone for water concentrations and ozone generations proportional to discharge power and discharge electrode area. Ozone yield has slowly increase with Increasing discharge power at high flow-rate. As the result, the maximum values of ozone characteristics ozone generation and ozone yield, can be obtained 5817[ppm] and 36[g/kWh]. We make enough the ozone concentration as the air in the home. An electric discharge electrode area is apt to shrink gradually into a miniaturization trend of the ozonizer but the enlargement of the occurrence flight of the electric discharge area gives the characteristic enhance the aid in the identity condition through the structure improvement.

  • PDF

A Study on Characteristics of Landslides of Debris Flow in Gangwon-do (강원도 토석류 산사태의 특성에 관한 연구)

  • Yoo, Nam-Jae;Jun, Sang-Hyun;Park, Nam-Sun
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.3-10
    • /
    • 2008
  • This paper is to investigate the characteristics of debris flow landslides in Gangwon Province through literature review, data collection and analyses and site investigation. As results of data analyses about landslides occurred currently in this province, the landslide in the form of debris flow is found to be 55 %. Therefore major loss and costs are caused by discharge of soil and rock fragments from landslide. From results of analyzing the geometrical characteristics of landslide, length of most of landslide is less than 200 m, their width is in the range of 10 - 40 m, most of them are know to be occurred in lower elevation than 400 m. Slope angle is in the range of 25 - 35 degrees. Comparing the period of rainfall intensity with the time of landslide being occurred, occurrence of landslide is quite related to duration of a heavy rainfall. For measures of controlling water flow discharge and debris flow, considering geological and topographical ground conditions, appropriate selection and building check dam, erosion control dam and ring net is very beneficial for reducing the loss and costs caused by the landslide of debris flow.

  • PDF

Dam Failure and Unsteady Flow Analysis through Yeoncheon Dam Case(II) - Unsteady Flow Analysis of Downstream by Failure Scenarios - (연천댐 사례를 통한 댐 파괴 부정류해석 및 하류 영향 검토(II) -시나리오에 따른 댐 하류 부정류 해석 및 범랑특성 연구-)

  • Jang, Suk-Hwan
    • Journal of Environmental Science International
    • /
    • v.17 no.11
    • /
    • pp.1295-1305
    • /
    • 2008
  • This study aims at the analyze of unsteady downstream flow due to dam failure along dam failure scenario and applied to Yeoncheon Dam which was collapsed August 1st 1999, using HEC-RAS simulation model. The boundary conditions of this unsteady flow simulation are that dam failure arrival time could be at 02:45 a.m. August 1st 1999 and failure duration time could be also 30 minutes. Downstream 19.5 km from dam site was simulated for unsteady flow analysis in terms of dam failure and non-failure cases. For the parameter calibration, observed data of Jeonkok station were used and roughness coefficient was applied to simulation model. The result of the peak discharge difference was 2,696 to $1,745\;m^3/sec$ along the downstream between dam failure and non-failure and also peak elevation of water level showed meanly 0.6m difference. Those results of these studies show that dam failure scenarios for the unknown failure time and duration were rational because most results were coincident with observed records. And also those results and procedure could suggest how and when dam failure occurs and downstream unsteady flow analyzes.

A Fundamental Study of a Variable Critical Nozzle Flow (가변형 임계 노즐유동에 관한 기초적 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.484-489
    • /
    • 2003
  • The mass flow rate of gas flow through critical nozzle depends on the nozzle supply conditions and the cross-sectional area at the nozzle throat. In order that the critical nozzle can be operated at a wide range of supply conditions, the nozzle throat diameter should be controlled to change the flow passage area. This can be achieved by means of a variable critical nozzle. In the present study, both experimental and computational works are performed to develop variable critical nozzle. A cone-cylinder with a diameter of d is inserted into conventional critical nozzle. It can move both upstream and downstream, thereby changing the cross-sectional area of the nozzle throat. Computational work using the axisymmetric, compressible Navier-Stokes equations is carried out to simulate the variable critical nozzle flow. An experiment is performed to measure the mass flow rate through variable critical nozzle. The present computational results are in close agreement with measured ones. The boundary layer displacement and momentum thickness are given as a function of Reynolds number. An empirical equation is obtained to predict the discharge coefficient of variable critical nozzle.

  • PDF

Effect of Condensation on Spray Characteristics of Simplex Swirl Nozzle (응축이 심플렉스 와류 노즐의 분무 특성에 미치는 영향)

  • Koh, Kwang-Uoong;Lee, Sang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.107-112
    • /
    • 2001
  • The effect of ambient gas (steam) condensation on swirl spray characteristics were studied experimentally for low subcooling condition of the liquid. The configuration of the liquid(water) sheet and the breakup modes were examined. Also variation of the discharge coefficient, breakup length, local and the cross-sectional area-averaged SMD of droplets with the liquid flow(injection) rate were obtained. The perforation breakup mode appears dominant with condensation while the aerodynamic wave breakup mode is dominant without condensation(in the air environment). The discharge coefficient, breakup length and the mean drop sizes decrease in a same manner with increasing of the liquid flow rate for both cases(with and without condensation). The condensation effects are insignificant with the discharge coefficient. However, the local and cross-sectional area-averaged SMD are larger and the breakup length becomes shorter in the steam environment. The spray angle predicted from the volumetric flux distribution along the radial direction of the sprays in the steam environment becomes larger with condensation.

  • PDF

Effect of the Nozzle Curvature on Critical Flows (임계노즐 유동에 미치는 노즐 곡률의 영향)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.331-336
    • /
    • 2002
  • Recently the critical nozzles with small diameter are being extensively used to measure mass flow in a variety of industrial fields and these have different configurations depending on operation condition and working gas. The curvature radius of the critical nozzle throat is one of the most important configuration factors promising a high reliability of the critical nozzle. In the present study, computations using the axisymmetric, compressible, Navier-Stokes equations are carried out to investigate the effect of the nozzle curvature on critical flows. The diameter of the critical nozzle employed is D=0.3mm and the radius of curvature of the critical nozzle throat is varied in the range from 1D to 3D. It is found that the discharge coefficient is very sensitive to the curvature radius(R) of critical nozzle, leading to the peak discharge coefficient at R = 2.0D and 2.5D, and that the critical pressure ratio increases with the curvature radius.

  • PDF

Structural Analysis of the Valve Block of a Swash Plate-Type Axial Piston Pump (사판식 축 피스톤 펌프 밸브블록의 구조 해석에 관한 연구)

  • Kim, Jeong-Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.52-57
    • /
    • 2016
  • A swash plate-type piston pump is a device used to discharge hydraulic fluid as the volume generated through the piston moves in the direction of the slope by adjusting the angle of its swash plate. In addition, the valve block internalized in the pump includes a flow path for intake from outside, a flow path for discharge, and a pilot conduit line to control discharge pressure and flux. In this study, a numerical analysis is conducted to improve the cracking of the valve block generated during process testing, and the developed pump is evaluated.

Heat Transfer Characteristics of High Temperature molten salt storage for Solar Thermal Power Generation (태양열 발전에서 태양열에너지 수송을 위한 고온 축열 물질의 열절달 특성)

  • Mao, Aiming;Kim, Ki-Man;Kang, Yong-Heack;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.190-193
    • /
    • 2008
  • The heat transfer characteristics of molten salt storage system for the solar thermal power generation were investigated. Temperature profiles and the heat transfer coefficients during the storage and discharge stage were obtained with the steam as the heat transfer fluid. Two kinds of inorganic salt were employed as the storage materials and coil type of heat exchanger were installed in both tanks to provide the heat transfer surfaces during the storage and discharge stage. The effects of steam flow rates, flow direction of steam in the storage tank and the initial temperature of storage and discharge tank on the heat transfer were tested.

  • PDF

Effect of Radius of Curvature of a Corona Needle on Ionic Wind Generation (방전 침전극의 곡률반경이 이온풍 발생에 미치는 영향)

  • Hwang, Deok-Hyun;Moon, Jae-Duk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.604-608
    • /
    • 2010
  • An electric fan for cooling high density electronic devices is limited and operated in very low efficiency. The corona discharge is utilized as the driving mechanism for an ionic gas pump, which allows for air flow control and generation with low noise and no moving parts. These ideal characteristics of ionic pump give rise to variety applications. However, all of these applications would benefit from maximizing the flow velocities and yields of the ionic pump. In this study, a needle-mesh type ionic pump has been investigated by focusing on the radius of curvature of corona needle points elevating the ionic wind velocity and efficiency. It is found that the radius of curvature of the corona discharge needle point influences significantly to produce the ionic wind and efficiency. As a result, an elevated ionic wind velocity and increased ionic wind generation yield can be obtained by optimized the radius of curvature of the corona needle electrode.

Particle Trajectory Visualization in Electrostatic Precipitator (정전집진기내의 입자궤적 가시화)

  • 박석주;김상수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3270-3275
    • /
    • 1994
  • Particle trajectory visualization using laser sheet was performed to investigate the corona wind flow interactions in the one-wire and two-wire type electrostatic precipitators. The corona wind generated by corona discharge was not negligible, and strong flow interactions took place owing to the induced circulatory cells. In the case of one-wire type, as the applied voltage was increased and the cross-section mean velocity was decreased, the effect of corona wind became active. In the case of two-wire type, if upstream discharge voltage was relatively higher than downstream discharge voltage, the effect of upstream corona wind was reduced.