• Title/Summary/Keyword: discharge flow

Search Result 2,054, Processing Time 0.026 seconds

A Numerical Study on the Turbulent Flow in the Discharge Flow Path from a Diffuser to a Wall (디퓨저에서 벽면으로의 방출유로에서의 난류유동에 관한 수치 해석적 연구)

  • Lee J.;Kim Y. I.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.44-50
    • /
    • 2001
  • A numerical study was made to choose the better turbulence model for the flow in the discharge flow path from a diffuser to a wall. In this study standard $\kappa-\epsilon$ model(SKE), RNG $\kappa-\epsilon$ model(RNG), and Reynolds stress model(RSM) were applied. In case of the flow with relatively high Reynolds number at a diffuser inlet, the pressure loss coefficients by RNG have a tendency to be near to those by SKE at small ratio(below about 0.35) of $h/D_o$, but to those by RSM at large ratio(above about 0.35). At large ratio RNG begins to enlarge the effects of rapid strain and streamline curvature. RNG & RSM are recommended as the appropriate turbulence models for this case. But it is noticeable that the velocity gradient pattern in RNG is same as in SKE, and also that the total pressure distribution in RNG is same as in RSM only at swirling flow area, same as in SKE only at main flow area.

  • PDF

An experimental study on the steady flow around an intake valve exit (흡기 밸브 주위의 정상 상태 유동에 관한 실험적 연구)

  • 이상석;이석재;김응서
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.82-89
    • /
    • 1991
  • In order to investigate the characteristics of flow around the intake around the intake valve exit, discharge coefficient and the velocity near the valve exit in steady state were measured using X-type hot-wire. Valve and valve seat insert used in experiment were constructed as the same shape of production engine and the flow characteristics at various flow rates and valve lifts were investigated. From the results of discharge coefficient measurements, it is observed that there exists a similarity between the flow characteristics around the production engine valve and the typical poppet valve. Measurement of the velocity at the valve exit shows that the normalized radial velocity between the primary direction of flow and the valve angle is large, but the difference becomes smaller as the flow rate increases.

  • PDF

Prediction of Stage Discharge Curve and Lateral Distribution of Unit Discharge in an Arbitrary Cross Section Channel with Floodplain Vegetation (홍수터 식생을 고려한 불규칙한 단면에서의 수위-유량 곡선 및 단위유량 횡분포 예측)

  • Kim, Tae-Beom;Jang, Ji-Yeon;Shin, Jae-Kook;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.157-167
    • /
    • 2011
  • A numerical model was developed to predict the stage-discharge curve and lateral distribution of unit discharge in open channels with nonuniform cross section or compound open-channels. The governing equation is the one-dimensional momentum equation based on assumptions of the steady and uniform flow conditions in the longitudinal direction and the uniform water surface elevation in a cross section. Vegetative drag force term was included in governing equation in order to reflect the effect of floodplain vegetation on the flow characteristics. Finite element method was applied to obtain the numerical solution of the governing equation. Stage-discharge curve and lateral distribution of unit discharge for a given water surface are calculated based on input data, such as the cross sectional geometry, Manning's roughness coefficient, vegetative information and longitudinal slope of channel bed. The developed model was verified by comparing the calculated results with the observed data and the results of Darby and Thorne's(1996) model and the nonlinear k-$\epsilon$ model. The verified model was applied to estimate the upstream boundary conditions in two-dimensional flow model. The numerical results using laterally distributed unit discharge were compared with those obtained using uniformly distributed unit discharge in two-dimensional flow model.

Study on Calibration Methods of Discharge Coefficient of Sonic Nozzles using Constant Volume Flow Meter

  • Jeong, Wan-Seop;Sin, Jin-Hyeon;Gang, Sang-Baek;Park, Gyeong-Am;Im, Jong-Yeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.17-17
    • /
    • 2010
  • This paper address technical issues in calibrating discharge coefficients of sonic nozzles used to measure the volume flow rate of low vacuum dry pumps. The first challenging issue comes from the technical limit that their calibration results available from the flow measurement standard laboratories do not fully cover the low vacuum measurement range although the use of sonic nozzles for precision measurement of gas flow has been well established in NMIs. The second is to make an ultra low flow sonic nozzlesufficient to measure the throughput range of 0.01 mbar-l/s. Those small-sized sonic nozzles do not only achieve the noble stability and repeatability of gas flow but also minimize effects of the fluctuation of down stream pressures for the measurement of the volume flow rate of vacuum pumps. These distinctive properties of sonic nozzles are exploited to measure the pumping speed of low vacuum dry pumps widely used in the vacuum-related academic and industrial sectors. Sonic nozzles have been standard devices for measurement of steady state gas flow, as recommended in ISO 9300. This paper introduces two small-sized sonic nozzles of diameter 0.03 mm and 0.2 mm precisely machined according to ISO 9300. The constant volume flow meter (CVFM) readily set up in the Vacuum center of KRISS was used to calibrate the discharge coefficients of the machined nozzles. The calibration results were shown to determine them within the 3% measurement uncertainty. Calibrated sonic nozzles were found to be applicable for precision measurement of steady state gas flow in the vacuum process. Both calibrated sonic nozzles are demonstrated to provide the precision measurement of the volume flow rate of the dry vacuum pump within one percent difference in reference to CVFM. Calibrated sonic nozzles are applied to a new 'in-situ and in-field' equipment designed to measure the volume flow rate of low vacuum dry pumps in the semiconductor and flat display processes.

  • PDF

An Estimation of Discharge Coefficient Considering the Geometrical Shape of Broad Crested Side Weir (광정횡월류위어의 기하학적 형상을 고려한 유량계수 산정)

  • Cho, Hong-Je;Kang, Ho-Seon
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.955-965
    • /
    • 2011
  • The flow characteristics of rectangular and 1 : 1 and 1 : 2 trapezoidal weirs were investigated through hydraulic experiments in order calculate the exact overflow discharge of the broad-crested side weir. The flow was found to be most stable in trapezoidal shapes with the lowest incline. The 1 : 1 and 1 : 2 trapezoidal weirs had 5.67% and 8.57% increases, respectively, compared to the rectangular weir in terms of overflow amount, which suggests that they are more effective in preventing flood. An integrated discharge coefficient equation taking into account the discharge coefficient equation and shapes was proposed through a multiple linear regression analysis with an addition of a new parameter for the side wear, $L/L_H$, to the conventional discharge coefficient equation. Also, the applicability of the newly proposed discharge coefficient equation was reviewed by comparing the measured and calculated overflow amounts based on the experimental data of preceding researches and existing researchers and the research data of this study.

Current, flow rate and pressure effects in a Gas-Jet-assisted Glow Discharge source (Gas-Jet-assisted Glow Discharge에서 전류, 가스 흐름 속도, 압력에 따른 영향 연구)

  • Lee, Gaeho;Kim, Dongsoo;Kim, Eunhee;Kang, Seongshik;Park, Minchun;Song, Haeran;Kim, Hasuck;Kim, Hyojin
    • Analytical Science and Technology
    • /
    • v.7 no.4
    • /
    • pp.483-492
    • /
    • 1994
  • Direct solid analysis of various kinds of metal samples has been conducted by glow discharge. In this laboratory, the gas-jet assisted glow discharge(GJGD) device has been developed and characterized. The effect of changes in applied current, cell pressure and flow rate on atomic emission signals obtained from a jet-assisted cathodic sputtering was investigate. The emission intensities of Cu, Zn, and Ar were measured. They were increased with the current. But the intensities were decreased by increasing the flow rate of argon due to the diffusion and transportation of particles into plasma. By increasing the pressure of the cell, the intensities were greatly decreased because of enhancement of redeposition onto the surface of the sample.

  • PDF

One-Plate Type Hybrid Plasma Discharge Device with Heating Element (히터 일체형 하이브리드 단판형 플라즈마 방전소자)

  • Choi, Woo Jin;Choi, Eun Hye;Sung, Hyeong Seok;Kwon, Jin Gu;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.4
    • /
    • pp.320-326
    • /
    • 2019
  • Recently, the application of atmospheric plasma technology in air filtration is increasing. Sterilization by an atmospheric plasma device is very effective. However, ozone gas, which is generated during atmospheric plasma formation, poses a hazard to human health. To reduce the ozone gas during plasma discharge, we fabricated a one-plate hybrid plasma discharge device with a heating element, which can decompose ozone gas effectively by a simple heating action. In this study, we evaluated the plasma discharge characteristics and ozone concentrations with various Ar flow rates and temperatures. With increasing Ar gas flow rate, the ozone concentration and spectrum intensity increased till an Ar gas flow rate of 60 sccm, and decreased thereafter. When discharged in high temperature, the ozone concentration and spectrum intensity decreased. Further, to evaluate the state of the treated surface under various plasma discharge and heating conditions, we measured the variation in the contact angles on the surface. Regardless of the temperature, the contact angle increased with increasing discharge voltage. However, the contact angle increased when discharged at high temperature.

Prediction of Oil Lifetime due to Overheating of Oil and Bearing Housing in a Pump (펌프 베어링하우징에서 베어링과 오일의 과열 및 오일수명 예측)

  • 한상규;강병하;이봉주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.408-413
    • /
    • 2004
  • An experimental study has been carried out to investigate overheating of oil and bearing housing during pump operation. This problem is of particular interest in the pre diction of lifetime and failure of pump. Transient variation of oil temperature as well as bearing housing temperature is measured to study the effect of oil viscosity, oil amount, and discharge flow rate of pump. It is found that optimal oil quantity as well as proper viscosity of oil is required to keep the safe temperature level of oil and bearing housing in a pump. The oil temperature at steady state is almost not affected by discharge flow rate in the range of discharge flow rates considered in the present study.

Flow rate Measurement Using Segmental Wedge as a Restriction Device for Differential Pressure (Segmental Wedge를 이용한 차압식 유량측정 방법)

  • Yoon J.Y.;Sung N.W.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.3 s.36
    • /
    • pp.22-28
    • /
    • 2006
  • The discharge coefficient in segmental wedge haying ninety degrees yeller angle for the five kinds of opening ratio with differential pressure taps located at both upstream and downstream of one diameter of pipe was measured. Main purpose of this work is placed on specifying the characteristic of discharge coefficient of a segmental wedge used as a primary element of flow metering devices, and suggestion for the fixed location of pressure taps useful. Although the range of the opening ratio over this work is more expanded than previous studies. The opening ratios of segmental wedge, namely 0.3, 0.4, 0.5, 0.6 and 0.7 were investigated. The Reynolds number based on the spool inside diameter ranges from 12,000 to 380,000.

Two-Dimensional Analysis of Pressure Distribute by Underwater Electric Discharge (수중방전에 의한 압력분포의 2차원 해석)

  • Kim, Y.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.68-77
    • /
    • 1995
  • The two-dimensional pressure distribution, which is the most important parameter in the casting cleaning installations(CCI), was analyzed using the K-FIX computer program for two-phase flow. Modelling was done using R-Z coordinates for the initial and boundary conditions which don't have periodic influx and efflux, and also there was the electric discharge due to high pressure and temperature. The marked particles were introduced to prodict the structure and the size of main and local moving surfaces. The initial and boundary conditions were modified due to the internal structure of CCI.From the results of numerical analysis, it was shown that the maximum pressure on casting was increased with the increase of a water level. The pressure on casting in the radial direction was higher than that in axial direction. Also, it was proved that by introducing the marked particles it was possible to predict the surface structure in case of two-phase flow.

  • PDF