Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.4.320

One-Plate Type Hybrid Plasma Discharge Device with Heating Element  

Choi, Woo Jin (Department of Advanced Materials Engineering, Korea Polytechnic University)
Choi, Eun Hye (Department of Advanced Materials Engineering, Korea Polytechnic University)
Sung, Hyeong Seok (Department of Advanced Materials Engineering, Korea Polytechnic University)
Kwon, Jin Gu (Department of Advanced Materials Engineering, Korea Polytechnic University)
Lee, Seong Eui (Department of Advanced Materials Engineering, Korea Polytechnic University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.4, 2019 , pp. 320-326 More about this Journal
Abstract
Recently, the application of atmospheric plasma technology in air filtration is increasing. Sterilization by an atmospheric plasma device is very effective. However, ozone gas, which is generated during atmospheric plasma formation, poses a hazard to human health. To reduce the ozone gas during plasma discharge, we fabricated a one-plate hybrid plasma discharge device with a heating element, which can decompose ozone gas effectively by a simple heating action. In this study, we evaluated the plasma discharge characteristics and ozone concentrations with various Ar flow rates and temperatures. With increasing Ar gas flow rate, the ozone concentration and spectrum intensity increased till an Ar gas flow rate of 60 sccm, and decreased thereafter. When discharged in high temperature, the ozone concentration and spectrum intensity decreased. Further, to evaluate the state of the treated surface under various plasma discharge and heating conditions, we measured the variation in the contact angles on the surface. Regardless of the temperature, the contact angle increased with increasing discharge voltage. However, the contact angle increased when discharged at high temperature.
Keywords
Ozone concentration; Heat element; Hybrid plasma discharge device;
Citations & Related Records
연도 인용수 순위
  • Reference
1 I. H. Won, S. K. Kang, J. Y. Sim, and J. K. Lee, IEEE Trans. Plasma Sci., 42, 2788 (2014). [DOI: https://doi.org/10.1109/tps.2014.2320266]   DOI
2 K. H. Song, Y. S. Ko, and W. C. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 9, 1427 (2014). [DOI: https://doi.org/10.13067/jkiecs.2014.9.12.1427]
3 H. H. Son and W. G. Lee, Appl. Chem. Eng., 22, 261 (2011).
4 W. Y. Lee, D. J. Jin, Y. J. Kim, G. H. Han, H. K. Yu, H. C. Kim, S. W. Jin, J. H. Koo, D. Y. Kim, and G. Cho, J. Korean Vac. Soc., 22, 111 (2013). [DOI: https://doi.org/10.5757/JKVS.2013.22.3.111]   DOI
5 J. S. Kim, H. Jee, and H. W. Seo, New Phys.: Sae Mulli, 67, 1399 (2017). [DOI: https://doi.org/10.3938/NPSM.67.1399]   DOI
6 S. B. Han, S. S. Park, J. H. Kim, and J. Y. Park, J. Korean Inst. Illum. Electr. Install. Eng., 27, 45 (2013). [DOI: https://doi.org/10.5207/JIEIE.2013.27.7.045]
7 S. J. Lee and J. T. Lee, Inst. Electron. Info. Eng., 2016, 920 (2016).
8 B. J. Chun, S. K. Lee, M. F. Rahman, D. H. Lee, W. Z. Park, and K. S. Lee, J. Elec. Eng. Technol., 1999, 2004 (1999).
9 S. W. Hwang, H. J. Lee, and H. J. Lee, J. Korean Vac. Soc., 20, 258 (2011). [DOI: https://doi.org/10.5757/JKVS.2011.20.4.258]   DOI
10 C. J. Lee, S. K. Lee, G. H. Park, and B. M. Kim, Trans. Korean Soc. Mech. Eng. A, 32, 354 (2008). [DOI:https://doi.org/10.3795/KSME-A.2008.32.4.354]   DOI
11 P. G. Reyes, E. F. Mendez, D. Osorio-Gonzalez, F. Castillo, and H. Martinez, Phys. Status Solidi C, 5, 907 (2008). [DOI:https://doi.org/10.1002/pssc.200778306]   DOI
12 S. J. Cho, C. K. Jung, S. S. Kim, and J. H. Boo, Appl. Sci. Converg. Technol., 19, 22 (2010). [DOI: https://doi.org/10.5757/JKVS.2010.19.1.022]   DOI