• 제목/요약/키워드: discharge cleaning

검색결과 92건 처리시간 0.031초

KSTAR 토카막 장치 진공 기술 현황 (Status of vacuum technique in KSTAR)

  • 김광표;김현석
    • 진공이야기
    • /
    • 제4권1호
    • /
    • pp.16-23
    • /
    • 2017
  • Recently, KSTAR, Korea's superconducting fusion energy research and development device, has succeeded in driving the high performance plasma for 70 seconds for the first time in the world. Continuous plasma operation technology is an essential factor for commercialization of fusion energy power generation. Therefore, this achievement is expected to play a major role in the research of fusion technology required for future fusion power plants. In order to operate the KSTAR, the discharge process in which the neutral gas is turned into the plasma should be preceded in the start-up (breakdown) phase of tokamak operation. This process essentially involves the vacuum environment in the tokamak device. KSTAR has successfully operated a vacuum pumping system to achieve the target level of the vacuum environment through a high temperature baking operation, a discharge cleaning process and boronization.

3E-3G 방전관의 압력변화시 오존생성특성 (Ozone Generation Characteristics with Varying the Pressures of 3Electrodes-3GaP Discharge Tube)

  • 조국희;김영배;서길수;이형호;이시영;방성운
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.1063-1065
    • /
    • 1999
  • Recently the ozone generation system is well used for cleaning the contaminated water by using the strong oxidization effects. Accordingly, with the purpose of improving ozone yield at the peak of ozone concentration, this paper describes the stracture and characteristics of ozonizer, and focused on the development of a 3E-3G discharge tube.

  • PDF

반응성 플라즈마를 이용한 태양전지용 Si기판의 표면 처리 (Surface treatment of Si wafer for solar cell using reactive plasma method)

  • 박병욱;곽동주;성열문
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1305-1306
    • /
    • 2007
  • To lower the fabrication cost of silicon solar cells, a surface treatment using a dielectric barrier discharge instead of a wet cleaning technique was examined on electrode surfaces on silicon solar cells. The fill factor obtained through measuring current-voltage characteristics was evaluated, and the treated surface state was characterized by energy-dispersive X-ray. It was found that the dielectric barrier discharge effectively activated the electrode surface and the surface treatment on finger electrodes contributed greatly to improve the fill factor.

  • PDF

대기압 유전체배리어 방전으로 표면처리된 TiO2 분말의 광분해 특성 (Photolytic Characteristics of TiO2 Treated by Atmospheric Pressure Dielectric Barrier Discharge)

  • 강정아;김윤기
    • 한국재료학회지
    • /
    • 제26권8호
    • /
    • pp.406-411
    • /
    • 2016
  • In order to reuse the photocatalyst and enhance the photolysis efficiency, we have used atmospheric pressure dielectric barrier discharge (APDBD) to clean and activate $TiO_2$ powder. The photocatalytic activity of the $TiO_2$ powder before and after APDBD treatment was evaluated by the degradation of methylene blue (MB) in aqueous solution. The apparent reaction rate constant of photolysis of the first sample of reused $TiO_2$ cleaned by APDBD improved to a level up to 0.32h-1 higher than the 30 % value of the initial $TiO_2$ powder. As the number of photolysis reactions and APDBD cleanings increased, the apparent rate constants gradually decreased; however, the fourth photolysis reaction still showed a value that was greater than 10% of the initial value. In addition, APDBD treatment enhanced the process by which $TiO_2$ effectively adsorbed MB at every photolysis stage.

코로나 방전 반응기에서 Carbon Soot 입자의 재비산 (Reentrainment of Carbon Soot Particles in a Corona Discharge Reactor)

  • 이재복;황정호;배귀남
    • 대한기계학회논문집B
    • /
    • 제24권7호
    • /
    • pp.1002-1009
    • /
    • 2000
  • Among the various types of diesel after-treatment device, the corona discharge reactor may be considered as a powerful process for trapping submicron particles. But after precipitation on the electrodes occurs, the reentrainment of particles is severe and often causes low or negative precipitation efficiency. Experiments were performed to investigate the effect of an applied voltage on the reentrainment of soot particles from the electrodes. A co-annular laminar diffusion flame burner was used as the soot generator. When a highly negative voltage was applied, exfoliation of the deposited soot particles and an increase in concentration of particles smaller than approximately 150 nm were observed. Turbulence induced from the negative tuft corona and sputtering caused particle reentrainment from the corona wire and from plates as well. Under soot laden combustion gas, a streamer corona often occurred in the wire-cylinder reactor. Because of its transient nature, streamer corona violently increased the concentration of reentrained particles and CO gas.

공기 청정지역(Class 100 이하)에 적합한 정전기 제거장치의 개발 및 특성에 관한 연구(I) - LCD 제조 공정을 중심으로 - (A Study for Development and Characteristics of Electrostatic Eliminator Suitable for the Super Clean Room Less than Class 100(I))

  • 정용철;박훈규;이동훈
    • 한국안전학회지
    • /
    • 제21권4호
    • /
    • pp.60-65
    • /
    • 2006
  • It is a well known fact that LCD is a central part of the IT industry which is important in the present and the future. But the biggest problem of LCD manufacturing is maintaining a cleaning room environment and administration. Therefore the purpose of this study is to first, prevent the yield depreciation and damage of products, and second, protect the worker ftom accidental electrostatic discharge during LCD manufacture. The soft x-ray ionizer is a type of electrostatic reducer device. It protects against electrostatic discharge in the cleaning room environment and is a necessary environmental factor during LCD production. The positive aspects of the soft x-ray are its shorter time and wider angle of exposure. But the negative aspect of the soft x-ray is its need for several shielding of protection from the harmful x-ray exposure. On this study, the development of the Air Nozzle-type ionizer to amend and refine some problems. For example, examined the electrostatic reduce device of a soft x-ray type and discovered the ion did not go inside well. also workers to be free from danger. An Air Nozzle-type ionizer is comprised of soft x-ray radiation and ionized air production. Air is injected through the nozzle after being ionized from radiation. It supplies air keeping the same pressure into the end foundation of ion production. The soft x-ray is the structure which radiates ionized air through the nozzle (21 holes) having micro holes of the ionizable radiation after ionizing the inside air by the ion production. A worker does not need a cover to protect against x-rays and the Air Nozzle-type ionizer is easy to set up and is more effective at eliminating electrostatic.

PR 제거공정 적용을 위한 오존 수 생성기술 연구 (A Study on the Ozonized Water Production technology for the PR Strip Process)

  • 손영수;채상훈
    • 대한전자공학회논문지SD
    • /
    • 제41권12호
    • /
    • pp.13-19
    • /
    • 2004
  • 반도체 또는 평판디스플레이 제조에 있어 노광공정 후의 PR(photo-resist) 제거 공정으로서 기존의 황산기반 용액을 대체하는 고농도 오존 수 생성 기술에 대한 연구를 수행하였다. 세라믹 연면방전구조의 오존발생장치를 개발하여, 0.5[ℓ/min]의 산소 유량에서 최대 12[wt%]이상의 오존가스 농도를 얻었으며, 이를 고농도로 물과 혼합하기 위한 고효율 오존접촉장치를 개발하였다. 오존 수 생성 실험 결과, 오존가스 10[wt%]에서 80[ppm]이상의 오존 수 농도를 달성하였으며, 70[ppm]의 오존 수에서 PR 제거율 147[nm/min]의 양호한 결과를 얻었다.

저온 플라스마 공정을 이용한 알루미늄 표면의 건식 세정에 관한 연구 (A Study on the Dry Cleaning of Aluminium Surfaces by Low Temperature Plasma Process)

  • 임경택;김경환;김경석;이휘지;송선정;손호경;조동련
    • 공업화학
    • /
    • 제19권6호
    • /
    • pp.640-644
    • /
    • 2008
  • 저온 플라스마 공정을 이용하여 알루미늄 표면에 묻은 윤활유를 세정하였다. 아르곤이 혼합된 산소 플라스마를 사용하였으며, 아르곤의 혼합비, 방전전력, negative DC potential 등의 공정변수를 변화시키면서 실험을 수행하였다. 저온 플라스마 세정 후 케이스의 표면을 FTIR과 EDX를 사용하여 분석한 결과 순수 윤활유의 경우 대부분이 20 min 안에 제거되었다. 제거효율은 저온 플라스마 공정조건에 따라 크게 달라졌으며, 산소에 아르곤이 약 30% 혼합된 기체를 사용하여 케이스에 -500 V 이상의 negative DC potential을 걸어주고 300 W로 처리할 때 가장 높은 효율을 보였다. 하지만, 무기물이 함유된 윤활유의 경우에는 어떤 조건에서도 60% 이상의 제거효율을 얻을 수 없었다.

냉음극형 대면적 펄스 전자빔 가속기의 빔인출 특성 (Characteristics of Electron Beam Extraction in Cold Cathode Type Large Cross-Sectional Pulsed Electron Beam Generator)

  • 우성훈;이광식;이동인;이홍식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 C
    • /
    • pp.1609-1611
    • /
    • 2001
  • A large cross-section pulsed electron beam generator of cold cathode type has been developed for industrial applications, for example, waste water cleaning, flue gas cleaning, and pasteurization etc. The operational principle is based on the emission of secondary electrons from cold cathode when ions in the plasma hit the cathode, which are accelerated toward exit window by the gradient of an electric potential. The conventional electron beam generators need an electron scanning beam because the small cross section thermal electron emitter is used. The electron beam of large cross-section pulsed electron beam generator do not need to be scanned over target material because the beam cross section is large by 300$cm^2$. We have fabricated the large cross-sectional pulsed electron beam generator with the peak energy of 200keV and beam diameter of 200mm and obtained the large area electron beam in the air. The electron beam current has been investigated as a function of accelerating voltage, glow discharge current, helium pressure, distance from the exit window and radial distribution in front of the exit window.

  • PDF

냉음극형 대면적 전자빔의 공간적 분포 특성 (Characteristics of spatial distribution of cold cathode type large aperture electron beam)

  • 우성훈;;조주현;김광훈;이홍식;임근희;이광식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 E
    • /
    • pp.2170-2172
    • /
    • 1999
  • A low energy large aperture(LELA) pulsed electron beam generator of a cold cathode type has been developed for environmental applications, for example, waste water cleaning, flue gas cleaning, and pasteurization etc. The operational principle is based on the emission of secondary electrons from cold cathode when ions in the plasma hit the cathode, which are accelerated toward exit window by the gradient of an electric potential. We have fabricated the LELA electron beam generator with the peak energy of 200keV and beam diameter of 200mm and obtained the large aperture electron beam in air. The electron beam current density has been investigated as a function of glow discharge current, accelerating voltage and radial distribution in front of the exit window foil. The plasma density and electron temperature have been measured in order to confirm the relation with the electron beam current density. We are going to upgrade the LELA electron beam generator in the electron energy, electron beam current and stability of operation for various applications.

  • PDF