• Title/Summary/Keyword: discharge cells

Search Result 388, Processing Time 0.022 seconds

Charge/discharge Properties of $Li_2O-P_2O-V_2O_5$ Glasses as a Cathode Material for Lithium Rechargeable Battery (리튬 이차전지의 정극 물질로서 $Li_2O-P_2O-V_2O_5$ 유리의 충방전 특성)

  • 송희웅;구할본;손명모;이헌수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.383-386
    • /
    • 1999
  • The importance of rechargeable lithium cells has been emphasized. So a large variety of materials has been discovered and evaluated for use as reversible cathodes and electroyltes. This paper examines the charge/discharge properties and the charge/discharge cycling life of Li$_2$O-P$_2$O-V$_2$O$_{5}$Li cells. In audition, DTA tests were carried out on Li$_2$O-P$_2$O-V$_2$O$_{5}$ glass. As a result the best performance was achieved when 0.3Li$_2$O-0.1P$_2$O$_{5}$-0.6V$_2$O$_{5}$Li cells was mixed with SP270. that is discharge capacity of 240mAh/g have been achieved. In addition this battery exhibited good cycling performance. Considering these results we expected utilization of the Li$_2$O-P$_2$O-V$_2$O$_{5}$ glass as a cathode material in a secondary battery.y battery.

  • PDF

Some Micro-discharge Characteristics of the cells in ac-PDP

  • Son, Jin-Boo;Lee, Sung-Hyun;Lee, Dong-Hyun;Kim, Young-Dae;Cho, Jung-Soo;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2000.01a
    • /
    • pp.103-104
    • /
    • 2000
  • Voltage transfer curves have been used for analyzing the micro-discharge characteristics of cells in ac-PDP. This paper deals with the effect of working gas species, pressure and frequency of applied voltage on the micro-discharge characteristics. Using the mixture gases of He+Xe or He+Ne+Xe, wall voltage steeply varied compared with only He gas, and also voltage margin increased. Discharge voltage and voltage margin increased with increasing Xe percentage, and also wall voltage more steeply varied. In addition, the variation of effective wall capacitance which is significantly dependent on the discharge strength is discussed.

  • PDF

A New Driving Waveform for Stable Address Discharge in an Alternating Current Plasma Display Panel

  • Kim, Sung-Hwan;Seo, Jeong-Hyun;Lee, Seok-Hyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.503-506
    • /
    • 2004
  • In this paper, we suggest a new driving waveform for stable address discharge in AC PDP without the reduction of contrast ratio. To analyze the influence of cross-talk between discharge and non-discharge cells and verify that proposed waveform shows a stable address discharge, we measured the address discharge delay time. The proposed waveform shows the reduction of the cross-talk and concurrently the improvement of address voltage margin compared with those of selective reset waveform having one reset period in 1TV-Field..

  • PDF

The Polyaniline Electrode Doped with Li Salt and Protonic Acid in Lithium Secondary Battery

  • Ryu, Kwang-Sun;Kim, Kwang-Man;Hong, Young-Sik;Park, Yong-Joon;Jang, Soon-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1144-1148
    • /
    • 2002
  • We prepared the polyaniline (Pani) film and powder by chemical polymerization and doping with different dopants and also investigated the capability of Li//polyaniline cells after assembling. The oxidation/reduction potentials and electrochemical reaction of Li//polyaniline cells were tested by cyclic voltammetry technique. The Li//Pani-HCl cells with 10% and 20% conductors show a little larger specific discharge capacities than that without conductor. The highest discharge capacity of almost 50 mAh/g at 100th cycle is also achieved. However, Li//Pani-LiPF6 with 20% conductor shows a remarkable performance of ~90 mAh/g at 100th cycle. This is feasible value for using as the positive electrode material of lithium ion secondary batteries. It is also proved that the powder type electrode of Pani is better to use than the film type one to improve the specific discharge capacity and its stability with cycle.

Modeling of The Ni-MH Battery Source and Development of The Charger.Discharger System (Ni-MH 전지전원의 모델링과 충.방전 장치 개발)

  • 김광헌;허민호;박영수;안재영;양승학;이일기
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.433-437
    • /
    • 1998
  • Equalize SOC of the cell which effect on the charge.discharge ability and the efficiency of the battery, through the charge.discharge characteristic test of the battery source, and develope the high efficiency charge.discharge system in the series HEV have a constant engine-generator output. For this, in this paper, establish the electrical model and the condition of high efficiency charge.discharge, and proposed the improvement method of charge.discharge characteristic in the battery source that consist of twenty Ni-MH cells connected serial/parallel

  • PDF

A New Driving Scheme for Reduction of Addressing time and its Dispersion in AC PDP

  • Lee, Sung-Hyun;Kim, Dong-Hyun;Park, Cha-Soo;Park, Chung-Hoo;Ryu, Jae-Hwa
    • Journal of Information Display
    • /
    • v.2 no.2
    • /
    • pp.39-44
    • /
    • 2001
  • The conditions of the wall charges and priming particles in a unit discharge cell in AC PDP seriously affect the addressing discharge characteristics in the driving method with ramped setup pulse. Moreover, the discharge conditions at the end of the scan line may be different from the first scan line because of the difference of about 1ms address time. Consequently, the addressing time and its dispersion may be different for any two discharge cells that lead to misfiring and the increase in the total addressing time. In order to improve the addressing time and its dispersion, we have applied different addressing voltage at each cell such as progressively increase pulse voltage instead of constant one. As a result, the addressing time and its dispersion of all cells were improved by about 30% compared with the conventional driving method.

  • PDF

Thin Film Battery Using Micro-Well Patterned Titanium Substrates Prepared by Wet Etching Method

  • Nam, Sang-Cheol;Park, Ho-Young;Lim, Young-Chang;Lee, Ki-Chang;Choi, Kyu-Gil;Park, Gi-Back
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.2
    • /
    • pp.100-104
    • /
    • 2008
  • Titanium sheet metal substrates used in thin film batteries were wet etched and their surface area was increased in order to increase the discharge capacity and power density of the batteries. To obtain a homogeneous etching pattern, we used a conventional photolithographic process. Homogeneous hemisphere-shaped wells with a diameter of approximately $40\;{\mu}m$ were formed on the surface of the Ti substrate using a photo-etching process with a $20\;{\mu}m{\times}20\;{\mu}m$ square patterned photo mask. All-solid-state thin film cells composed of a Li/Lithium phosphorous oxynitride (Lipon)/$LiCoO_2$ system were fabricated onto the wet etched substrate using a physical vapor deposition method and their performances were compared with those of the cells on a bare substrate. It was found that the discharge capacity of the cells fabricated on wet etched Ti substrate increased by ca. 25% compared to that of the cell fabricated on bare one. High discharge rate was also able to be obtained through the reduction in the internal resistance. However, the cells fabricated on the wet etched substrate exhibited a higher degradation rate with charge-discharge cycling due to the nonuniform step coverage of the thin films, while the cells on the bare substrate demonstrated a good cycling performance.

A Study on the Discharge Characteristics of Micro Dielectric Barrier Discharge Cells by Adding TiO2 or MgO Powder (TiO2 또는 MgO 첨가에 따른 마이크로 유전격벽방전 셀의 방전특성 연구)

  • Han, Chang-Wook;Wi, Sung-Suk;Lee, Don-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1587-1591
    • /
    • 2015
  • For a higher definition discharge cell, the method of high speed addressing is necessary. In order to modify the surface charges, the liquefied $TiO_2$ or MgO powder is added on MgO layer in front glass and on the phosphor in rear glass in micro barrier discharge. Both the electro-optical properties and the discharge time lag characteristics are measured from 4 inch. test panel, such as the discharge voltage, current, luminance, luminous efficacy and discharge time lag. As the results, the statistic time lag is improved by about 40 %.

Effect of Conductive Additive Amount on Electrochemical Performances of Organic Supercapacitors (유기계 슈퍼커패시터에서 도전재의 양이 전기화학적 특성에 미치는 영향)

  • Yang, Inchan;Lee, Gihoon;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.696-703
    • /
    • 2016
  • In this study, we intensively investigated the effect of conductive additive amount on electrochemical performance of organic supercapacitors. For this purpose, we assembled coin-type organic supercapacitor cells with a variation of conductive additive(carbon black) amount; carbon aerogel and polyvinylidene fluoride were employed as active material and binder, respectively. Carbon aerogel, which is a highly mesoporous and ultralight material, was prepared via pyrolysis of resorcinol-formaldehyde gels synthesized from polycondensation of two starting materials using sodium carbonate as the base catalyst. Successful formation of carbon aerogel was well confirmed by Fourier-transform infrared spectroscopy and $N_2$ adsorption-desorption analysis. Electrochemical performances of the assembled organic supercapacitor cells were evaluated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy measurements. Amount of conductive additive was found to strongly affect the charge transfer resistance of the supercapacitor electrodes, leading to a different optimal amount of conductive additive in organic supercapacitor electrodes depending on the applied charge-discharge rate. A high-rate charge-discharge process required a relatively high amount of conductive additive. Through this work, we came to conclude that determining the optimal amount of conductive additive in developing an efficient organic supercapacitor should include a significant consideration of supercapacitor end use, especially the rate employed for the charge-discharge process.

Optimization on the Characteristics of DC Discharge Cell in the AND Gate PDPs (ADN Gate PDP의 DC 방전셀 방전특성 최적화)

  • Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.34-39
    • /
    • 2004
  • This research investigated the influence on the 4 cell of DC discharge on the side of the discharge characteristic. This DC discharge cells are that composes AND gate of AND gate PDP newly proposed. As for the discharge starting voltage of this discharge cell of 4 pieces, it has been understood that there is deeply a relation up to the space charge generated from the discharge of adjoining discharge cell through the experiment. The discharge voltages which had become each discharge cell optimizations from the experiment result were decided. Moreover, the width of the margin of two AND input voltages is wide and the AND function occurs clearly. However, it has been qualitatively understood that it is difficult enough to obtain the operation margin of the DC priming discharge used to address discharge of PDP.