• Title/Summary/Keyword: discharge capacity

Search Result 1,202, Processing Time 0.025 seconds

Analysis on the Discharge Capacity of Vertical Drains Installed in the Field (현장에 타설된 연직배수재의 통수능력 분석)

  • 박영목;진규남;정하익;정길수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.512-519
    • /
    • 2000
  • The discharge capacity of vertical drains installed in the field is reduced with time elapsed after installation due to deformation of drains and clogging effect. Discharge capacity of two types of vertical drains was analysed about three years after installation in the subsoil. Discharge capacity of two types of vertical drains were measured by small, middle, and large scale test apparatus. The results indicate that the discharge capacity of vertical drains after three years operation dramatically decreased compare to the initial discharge capacity.

  • PDF

Discharge Capacity of PBD and Deep Soft Soil Improvement (PBD의 배수특성과 대심도 지반개량)

  • 구본효
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.585-592
    • /
    • 2002
  • Discharge capacity of PBD is the most important factor of specification items to control any product of PBD. There is no standard specification for the PBD. Because the degree of discharge capacity is related to well resistance, install depth, maximum strain etc in the field. Discharge capacity test of PBD, permeability test of filter are conducted using PBD materials used in Korea. This paper proposes the critical discharge capacity for deep PBD under condition of non well resistance based upon their test and theoretical calculation. It was found that discharge capacity more than about 10 ㎤/sec is enough to undergo designing of deep PBD without well resistance.

  • PDF

The Discharge Capacity Test & Vertical Drain Adoption Considering the Ground Condition (지반특성을 고려한 연직배수재의 통수능 시험 및 선정)

  • Jung, Hun-Chul;Shin, Kyung-Ha;Jung, Ki-Moon;Huh, Jip
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2007.09a
    • /
    • pp.373-382
    • /
    • 2007
  • In the vertical drain method, discharge capacity is generally one of the most important factor which affect on the estimation of the drain efficiency. However, adopting the drain considering discharge capacity only is not sufficiently considered method so that systematic criteria for adoption is necessary to choose the most suitable drain. Therefore, this study represents the application method considering behavior of the ground and vertical drain which is coupled together and ground improvement efficiency analyzing various cases of discharge capacity test performed in the recent soft ground improvement projects. According to the analysis, most drains tend to satisfy the required discharge capacity. It presents that deformed shape of the drains and well resistance estimation along the ground settlement, improvement efficiency by water content ratio along the depth and shear strength obtained after ground improvement should be considered altogether with the discharge capacity to select the proper drain. Also, appropriate adoption of drain material considering the ground condition is vital through analyzing the field measured data and comparing the result of the discharge capacity test as various vertical drain materials are being constructed continuously.

  • PDF

A Study on Discharge Capacity of Vertical Drain Considering with In-situ Soil Condition (원지반조건을 고려한 연직배수재의 통수능에 관한 연구)

  • Park, Min-Chul;Kim, Eun-Chul;Lee, Song
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.47-56
    • /
    • 2012
  • Discharge capacity of PBD is sensitive in proportion to thickness and ground condition, and drainage of PBD declines due to disturbance effect in surrounding ground by mandrel used for vertical drainage setting and setting machines and type. Also, deviation of discharge capacity gets larger according to ground condition, construction condition and soil properties. But cause and analysis of those problems like reduced discharge of capacity and delayed dissipation of pore water pressure for discharge capacity is lack. Thus, in this text, ground improvement and discharge capacity is investigated by implementing composite discharge capacity test for analysis of an effect factor of PBD discharge capacity with in-situ ground condition. After fixing the vertical drain on a cylindrical cylinder, put churned sample into the cylinder. After in-situ ground and reclamation of ground are dredged, load following the loading step of 30, 70 and 120kPa using a pressure device. Result of the test, The discharge capacity was SM>ML>CL>CL(dredged soil) in situ condition and more fine-grained content, the amount of discharge was greater.

Capacity Evaluation of Cylindrical Plastic Board Drain with The Composite Discharge Capacity Apparatus (복합통수능시험기를 이용한 실린더형 플라스틱 보드 드레인의 성능 평가)

  • Lee, Chan-Woo;Jung, Du-Hwoe;Kim, Yun-Tae;Jin, Kyu-Nam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.293-299
    • /
    • 2008
  • If a conventional type of Plastic Board Drain (PBD) is installed to the deep clay deposit, it is subjected to a high lateral earth pressure. a flow channel of PBD may be reduced by the collapse of cores and clogged by the intrusion of filter into the space between cores which are made by lateral pressure. It could decrease the ability of initial discharge capacity and the reliability of long term discharge capacity. A cylindrical plastic board drain (C-PBD) considered in this study consists of cylindrical core and several supports so that it can prevent the reduction of area of flow channel from the higher lateral earth pressure effectively. The discharge capacity of C-PBD was compared to that of a conventional PBD through performing experiments using the composite discharge capacity apparatus which can consider in-situ condition such as penetration of drains, ground settlement and discharge capacity. As a result, C-PBD showed much better performance than PBD in the ability of discharge. It was observed that the C-PBD was folded whereas the conventional PBD was folded after the experiment.

  • PDF

A Study on the Characteristics of Discharge Capacity for Horizontal Drains (수평배수재의 통수특성에 관한 연구)

  • 박정용;박정순;장연수;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.557-564
    • /
    • 2002
  • Discharge capacity test is carried out to find out influencing factors on discharge capacity of prefabricated horizontal drains to improve weak dredged clay. Four representative prefabricated horizontal drains are selected based on the size of drain as well as the shape of core. Test is carried out for 10 days at each three level of confining pressure for all drains. Effects of elapsed time, confining pressure, hydraulic gradient and strength of filter and core on discharge capacities are examined. It is found that discharge capacity of drain, which has deformable core or has a possibility of squeezing filter into core, decreases more with time due to its low strength. As confining pressure increases, discharge capacity decreases due to the squeezing of filter into core.

  • PDF

Composite Discharge Capacity Analysis of Vertical Drain Installed in Ground (연직배수재가 타설된 지반의 복합통수능 해석)

  • Kim, Chang-Young;Kwak, No-Kyung;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1167-1174
    • /
    • 2008
  • Vertical drain method, which is one of the soft ground improvement methods, shorten s drain path to accelerate consolidation process and is applied in many sites. At a recent, composite discharge capacity experiment that analyze discharge amount by consolidation behavior with overburden pressure of soft ground in laboratory, simulates similarly with actuality. Geotechnical engineering problems such a s soft ground improvement are solved by numerical analysis by development of computer and numerical analysis techniques. Numerical analysis does that result is contrary by user's inexperience for choice of constitution model and application of analysis method. Therefore, this thesis experiments on composite discharge capacity test and study discharge capacity of drain and consolidation behavior of soft ground installed prefabricated vertical drain boards. Also, This thesis studied reasonable input parameters and constitution model by compare results of composite discharge capacity test and numerical analysis using PLAXIS that is 2D finial element numerical analysis program.

  • PDF

Discharge Capacity of Environmentally Friendly Drains (친환경배수재의 통수능 특성 평가)

  • Cho, Sam-Deok;Kim, Ju-Hyong;Jung, Seung-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.1
    • /
    • pp.27-36
    • /
    • 2005
  • Discharge capacity of the fiber mat and the fiber drain made with natural fibers abstracted from plant source was evaluated by permeability test for fiber mat and Delft type test and composite discharge capacity test using disturbed clayey soils for fiber drain. The permeability test results for environmentally friendly coconut fiber mat prove that fiber mat has outstanding permeability in substituting permeable sand. However, discharge capacity of fiber drain evaluated by conventional Delft type discharge capacity test was relatively lower than that of plastic drain board. Nevertheless, settlement and pore pressure dissipation behaviors of fiber drain and plastic drain board installed clay soil during the composite discharge capacity test were almost similar to that of plastic drain board. It is found that the natural fiber drain satisfies requiring minimum discharge capacity in substituting the conventional plastic drain board.

  • PDF

A Assessment of Discharge Capacity of Vertical Drains and Smear Zone Effect from Model Test (실내모형시험을 통한 연직배수재의 통수능력 및 스미어존 영향 평가)

  • Chun, Byung-Sik;Kim, Eui-Seok;Do, Jong-Nam;Kuk, Kil-Keun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1136-1143
    • /
    • 2008
  • The Vertical Drains(Sand Drains, Pack Drain, PBD) is used for Vertical Drains Method in domestic. Each of the drains is selected after it consider a field condition and efficiency of drain. A discharge capacity is very important factor, which to estimate a efficiency. And the smear Zone where disturbance area of in-suit by installation of Vertical Drains is important factor to select a drains. In this study, the complex discharge capacity test was operated for discharge capacity comparison of the Wing Drain and PBD. And a model test was operated to apprehend smear zone of the Wing Drain and PBD. From these tests, it was apprehended an engineering characteristic of vertical drain. The results of the complex discharge capacity test, a discharge capacity fell below $20cm^3/sec$ to $1cm^3/sec$ in more than overburden load $2.5kg/cm^2$. The Wing Drain maintained a over $40cm^3/sec$ in more than overburden load $2.5kg/cm^2$ and minimum discharge capacity $8cm^3/sec$. The results of the smear zone test, a influence bounds of smear zone was more larger in case of the Wing Drain(rectangle) than the PBD. But when a discharge capacity of Wing Drain is considered, it was concluded which smear zone bounds difference was effected in comparison with PBD. I think that it minimized a mandrel section to minimize a smear zone effect range

  • PDF

Discharge Capacity of Prefabricated Vertical Drain Confined In-Clay Under Long-Term Conditions (연직배수재 타설 후 장기간 경과된 지반의 통수성능)

  • Jeong, Sang-Guk
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.239-249
    • /
    • 2018
  • Typically, soft clay improvement is carried out using installation of PVD and surcharge method. According to circumstances, installed PVD has left for a long time due to the change in construction schedule. Therefore, for simulation of this kind of condition, discharge capacity tests were carried out under a series of temperature condition (30, 35, $40^{\circ}C$). The results indicated that under water confinement, the discharge capacities significantly reduced with elapsed time. And, the empirical equation by Miura and Chai (2000) was used for estimating the long-term in-clay discharge capacity. Based on the test results, it is recommended that in term of long-term discharge capacity, Miura and Chai's equation and reliability evaluation using discharge capacity tests under a series of temperature condition may be used.