• Title/Summary/Keyword: disaster responses

Search Result 202, Processing Time 0.031 seconds

Social Distancing and Public Health Guidelines at Workplaces in Korea: Responses to Coronavirus Disease-19

  • Kim, Eun-A
    • Safety and Health at Work
    • /
    • v.11 no.3
    • /
    • pp.275-283
    • /
    • 2020
  • Background: In the absence of a vaccine or treatment, the most pragmatic strategies against an infectious disease pandemic are extensive early detection testing and social distancing. This study aimed to summarize public and workplace responses to Coronavirus Disease-19 (COVID-19) and show how the Korean system has operated during the COVID-19 pandemic. Method: Daily briefings from the Korean Center for Disease Control and the Central Disaster Management Headquarters were assembled from January 20 to May 15, 2020. Results: By May 15, 2020, 11,018 COVID-19 cases were identified, of which 15.7% occurred in workplaces such as health-care facilities, call centers, sports clubs, coin karaoke, and nightlife destinations. When the first confirmed case was diagnosed, the Korean Center for Disease Control and Central Disaster Management Headquarters responded quickly, emphasizing early detection with numerous tests and a social distancing policy. This slowed the spread of infection without intensive containment, shut down, or mitigation interventions. After entering the public health blue alert level, a business continuity plan was distributed. After entering the orange level, the Ministry of Employment and Labor developed workplace guidelines for COVID-19 consisting of social distancing, flexible working schedules, early identification of workers with suspected infections, and disinfection of workplaces. Owing to the intensive workplace social distancing policy, workplaces remained safe with only small sporadic group infections. Conclusion: The workplace social distancing policy with timely implementation of specific guidelines was a key to preventing a large outbreak of COVID-19 in Korean workplaces. However, sporadic incidents of COVID-19 are still ongoing, and risk assessment in vulnerable workplaces should be continued.

Estimation of Harbor Responses due to Construction of a New Port in Ulsan Bay

  • Lee, Joong-Woo;Lee, Hoon;Lee, Hak-Sung;Jeon, Min-Su
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.08a
    • /
    • pp.217-225
    • /
    • 2004
  • Introduction of wave model, considered the effect of shoaling, refraction, diffraction, partial reflection, bottom friction, breaking at the coastal waters of complex bathymetry, is a very important factor for most coastal engineering design and disaster prevention problems. As waves move from deeper waters to shallow coastal waters, the fundamental wave parameters will change and the wave energy is redistributed along wave crests due to the depth variation, the presence of islands, coastal protection structures, irregularities of the enclosing shore boundaries, and other geological features. Moreover, waves undergo severe change inside the surf zone where wave breaking occurs and in the regions where reflected waves from coastline and structural boundaries interact with the incident waves. Therefore, the application of mild-slope equation model in this field would help for understanding of wave transformation mechanism where many other models could not deal with up to now. The purpose of this study is to form a extended mild-slope equation wave model and make comparison and analysis on variation of harbor responses in the vicinities of Ulsan Harbor and Ulsan New Port, etc. due to construction of New Port in Ulsan Bay. This type of trial might be a milestone for port development in macro scale, where the induced impact analysis in the existing port due to the development could be easily neglected.

  • PDF

Study of the Relationship between the East Asian Marginal SST and the Two Different Types of El Niño (서로 다른 두 유형의 엘니뇨와 동아시아 인근 해역 표층 온도 상관성 연구)

  • Yoon, Jin-Hee;Yeh, Sang-Wook
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.51-61
    • /
    • 2009
  • In this study we define the two different types of El $Ni{\tilde{n}}o$, i.e., the eastern Pacific El $Ni{\tilde{n}}o$ (i.e., EP-El $Ni{\tilde{n}}o$) versus the central Pacific El $Ni{\tilde{n}}o$ (i.e., CP-El $Ni{\tilde{n}}o$), during the boreal summer (June-July-August, JJA) and winter (December-January-February, DJF) using the two NINO indices in the tropical Pacific. The two different types of El $Ni{\tilde{n}}o$ significantly differ in terms of the location of the maximum anomalous sea surface temperature (SST) in the tropical Pacific. The CP-El $Ni{\tilde{n}}o$ has been observed more frequently during recent decades compared to the EP-El $Ni{\tilde{n}}o$. In addition, our analysis indicates that the statistics of CP-El $Ni{\tilde{n}}o$ during JJA is closely associated with the warming trend in the central equatorial Pacific. We also examine the different responses of the East Asian marginal SST to the two types of El $Ni{\tilde{n}}o$ during JJA and DJF. The CP-El $Ni{\tilde{n}}o$ during both JJA and DJF is concurrent with warm SST anomalies around the Korean Peninsula including the East China Sea, which is in contrast to the EP-El $Ni{\tilde{n}}o$. Such different responses are associated with the difference in tropics/mid-latitude teleconnections via atmosphere between the two types of El $Ni{\tilde{n}}o$. Furthermore, our results indicate that atmospheric diabatic forcing in relation to the precipitation variability is different in the tropical Pacific between the EP-El $Ni{\tilde{n}}o$ and the CP-El $Ni{\tilde{n}}o$.

Risk Influencing Factors in Performance of River Disaster Prevention Project (하천재해예방사업의 성과에 미치는 리스크 영향요인)

  • Cho, Jin-Ho;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.4
    • /
    • pp.417-428
    • /
    • 2020
  • The characteristics of the construction project involved various stakeholders' involvement from the planning stage until completion of the object, which caused the uncertainty to increase. Successful construction projects require risk analysis and appropriate responses. Therefore, this study aimed to confirm the influence of risk management factors on the success of river disaster prevention construction in construction projects and the effect of moderating communication between stakeholders involved in the construction process. The Delphi method was used to derive the risk management factors of the construction process. The survey used a snow ball sampling method. For analysis, SPSS Statistic 20 and SmartPLS 2.0 were used. As a result of the study, the impact of risk management factors on project performance was found to be large in the order of time risk, quality risk, cost risk, safety risk, and construction environment risk. In addition, the impact of the communication moderating effect was large in the order of cost risk, quality risk, construction environment risk, time risk, and safety risk. In this study, it was confirmed that communication between stakeholders related to river disaster prevention work has a moderating effect that changes the ranking of impacts on project performance. This shows the importance of communication in the construction process of river disaster prevention works. This study has important significance in that it identifies the importance of risk management factors and communication in river disaster prevention works.

A Method to Develop for Emergency Response Guidelines using Business Continuity Plan in Chemical Plant (BCP 기법을 활용한 화학공장에서의 사고대응 가이드라인 개발 방법에 관한 연구)

  • Yang, Jae-Mo;Seol, Ji Woo;Yong, Jong-Won;Ko, Sang Wook;Park, Chulhwan;Yoo, Byungtae;Ko, Jae Wook
    • Korean Chemical Engineering Research
    • /
    • v.52 no.6
    • /
    • pp.743-749
    • /
    • 2014
  • Even if many studies for the prevention of accidents in chemical plant have been carried out, recently more severe accidents in chemical plants have occurred continuously. These have a large potential impact and the loss of casualties and economic can vary according to the activities of early emergency responses. Thus, in order to mitigate the impact of accidents, the studies preparing the guidelines for emergency response have to be urgently needed. In this study, the current emergency responses guidelines and regulations in Korea were investigated to find out the drawbacks. And, to tackle these, BCP(Business continuity plan) method was used to improve the activities of early emergency responses as suggesting the basic components, response steps, feedback and procedures of the emergency responses.

Seismic responses of a free-standing two-story steel moment frame equipped with a cast iron-mortar sliding base

  • Chung, Yu-Lin;Kuo, Kuan-Ting;Nagae, Takuya;Kajiwara, Koichi
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.245-256
    • /
    • 2019
  • An experimental study was conducted to evaluate the dynamic behavior of a free-standing frame equipped with a movable base system using cast iron and mortar as the bearing materials. The preliminary friction test indicated that a graphite layer developed on the interface and exhibited stable friction behavior. The friction coefficient ranged from 0.33 to 0.36 when the applied normal compression stress ranged from 2.6 to 5.2 MPa. The effect of the variation of normal compression stress would be small. Shaking table tests on the free-standing frame showed that rock, slide, and rock-slide responses occurred. The cumulative slide distance reached 381 mm under JMA Kobe wave excitation; however, only a few cyclic slides occurred at the same locations along the moving track. Most surfaces sustained single slides. Similar results can be observed in other shaking conditions. The insufficient cyclic sliding and significant rocking resulted in a few graphite layers on the mortar surfaces. Friction coefficients were generally similar to those obtained in the preliminary friction tests; however, the values fluctuated when the rocking became significant. The collisions due to rocking caused strong horizontal acceleration responses and resulted in high friction coefficient. In addition, the strong horizontal acceleration responses caused by the collisions made the freestanding specimen unable to reduce the input horizontal acceleration notably, even when slippage occurred. Compared with the counterpart fixed-base specimen, the specimen equipped with the iron-mortar base could reduce the horizontal acceleration amplification response and the structural deformation, whereas the vertical acceleration response was doubled due to collisions from rocking.

The effect of finite element modeling assumptions on collapse capacity of an RC frame building

  • Ghaemian, Saeed;Muderrisoglu, Ziya;Yazgan, Ufuk
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.555-565
    • /
    • 2020
  • The main objective of seismic codes is to prevent structural collapse and ensure life safety. Collapse probability of a structure is usually assessed by making a series of analytical model assumptions. This paper investigates the effect of finite element modeling (FEM) assumptions on the estimated collapse capacity of a reinforced concrete (RC) frame building and points out the modeling limitations. Widely used element formulations and hysteresis models are considered in the analysis. A full-scale, three-story RC frame building was utilized as the experimental model. Alternative finite element models are established by adopting a range of different modeling strategies. Using each model, the collapse capacity of the structure is evaluated via Incremental Dynamic Analysis (IDA). Results indicate that the analytically estimated collapse capacities are significantly sensitive to the utilized modeling approaches. Furthermore, results also show that models that represent stiffness degradation lead to a better correlation between the actual and analytical responses. Results of this study are expected to be useful for in developing proper models for assessing the collapse probability of RC frame structures.

Investigations on a vertical isolation system with quasi-zero stiffness property

  • Zhou, Ying;Chen, Peng
    • Smart Structures and Systems
    • /
    • v.25 no.5
    • /
    • pp.543-557
    • /
    • 2020
  • This paper presents a series of experimental and numerical investigations on a vertical isolation system with quasi-zero stiffness (QZS) property. The isolation system comprises a linear helical spring and disk spring. The disk spring is designed to provide variable stiffness to the system. Orthogonal static tests with different design parameters are conducted to verify the mathematical and mechanical models of the isolation system. The deviations between theoretical and test results influenced by the design parameters are summarized. Then, the dynamic tests for the systems with different under-load degrees are performed, including the fast sweeping tests, harmonic excitation tests, and half-sine impact tests. The displacement transmissibility, vibration reduction rate, and free vibration response are calculated. Based on the test results, the variation of the transmission rule is evaluated and the damping magnitudes and types are identified. In addition, the relevant numerical time history responses are calculated considering the nonlinear behavior of the system. The results indicate that the QZS isolation system has a satisfactory isolation effect, while a higher damping level can potentially promote the isolation performance in the low-frequency range. It is also proved that the numerical calculation method accurately predicts the transmission character of the isolation system.

Effect of rain on flutter derivatives of bridge decks

  • Gu, Ming;Xu, Shu-Zhuang
    • Wind and Structures
    • /
    • v.11 no.3
    • /
    • pp.209-220
    • /
    • 2008
  • Flutter derivatives provide the basis of predicting the critical wind speed in flutter and buffeting analysis of long-span cable-supported bridges. Many studies have been performed on the methods and applications of identification of flutter derivatives of bridge decks under wind action. In fact, strong wind, especially typhoon, is always accompanied by heavy rain. Then, what is the effect of rain on flutter derivatives and flutter critical wind speed of bridges? Unfortunately, there have been no studies on this subject. This paper makes an initial study on this problem. Covariance-driven Stochastic Subspace Identification (SSI in short) which is capable of estimating the flutter derivatives of bridge decks from their steady random responses is presented first. An experimental set-up is specially designed and manufactured to produce the conditions of rain and wind. Wind tunnel tests of a quasi-streamlined thin plate model are conducted under conditions of only wind action and simultaneous wind-rain action, respectively. The flutter derivatives are then extracted by the SSI method, and comparisons are made between the flutter derivatives under the two different conditions. The comparison results tentatively indicate that rain has non-trivial effects on flutter derivatives, especially on and $H_2$ and $A_2$thus the flutter critical wind speeds of bridges.

Comparative study on the cable stayed bridge under moving load state (이동하중을 받는 사장교의 거동비교)

  • Sung, Ikhyun
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.258-266
    • /
    • 2017
  • Cable-stayed bridges are bridges with long spans for special purposes. Due to the long span, the dynamic response of the vehicle to the moving load is very special. The behavior also has nonlinear, which makes it difficult to design. In this study, the responses of cable - stayed bridges are considered considering various vehicle loads and the behavior of long - span bridges under moving loads is investigated. Especially, when the loads for one direction and for both directions move with speed, the behavior of the bridges is found to be due to the flexibility of the cable. It can be seen that the analysis including the dynamic behavior of the cable and the top plate is more effective because the influence of the vehicle load tends to amplify the vertical deformation together with the vibration of the cable.