• Title/Summary/Keyword: disaster on heavy snow

Search Result 43, Processing Time 0.028 seconds

A Study on Application of Construction Temporary System to Recover from Disaster on Heavy Snow (폭설재난에 대한 건설가설복구지원체계 활용방안 검토)

  • Kim, Min-Jeong;Park, Jun-Mo;Kim, Ok-Kyue;Choi, Byung-Ju;Kang, You-Mi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.59-60
    • /
    • 2011
  • In the 21th century, there ate problems of the environment caused by industrialization. for several years, the world has suffered great losses because of unforeseen weather phenomena. to make a system is needed about natural disaster especially to restore disaster on heavy snow, a role of construction temporary system is important. it needs to be construction temporary system to recover through analysing cases of disaster on heavy rain.

  • PDF

A Study of Heavy Snow event caused Runway closed (활주로 폐쇄를 야기한 대설 사례 연구)

  • Kim, Young-Chul
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.106-111
    • /
    • 2013
  • The heavy snow event occurred on JAN 4, 2010 brought huge disaster such as Gimpo International Airport runway closed, heavy delays of other airport, and property damage of 16 billion won. Though this heavy snow event is involved in the general synoptic scale heavy snow forecast, it recorded too much snow amount and longer duration than expected. To explain this unusual event, we used the conveyor belt theory. By combining the synoptic scale heavy snow forecast and the conveyor belt theory, the characteristics of heavy snow event was well explained.

Economic Loss Assessment caused by Heavy Snowfall - Using Traffic Demand Model and Inoperability I-O Model (대설의 경제적 피해 - 교통수요모형과 불능투입산출모형의 적용)

  • Moon, Seung-Woon;Kim, Euijune
    • Journal of Korea Planning Association
    • /
    • v.53 no.6
    • /
    • pp.117-130
    • /
    • 2018
  • Heavy snow is a natural disaster that causes serious economic damage. Since snowfall has been increasing recently, there is a need for measures against heavy snowfall. In order to make a policy decision on heavy snowfall, it is necessary to estimate the precise amount of damage by heavy snowfall. The direct damage of the heavy snow is severe, however the indirect damage caused by the road congestion and the urban dysfunction is also serious. Therefore, it is necessary to estimate indirect damage of snowfall. The purpose of this study is to estimate the effects on the regional economy from the limitation in traffic logistics caused by heavy snow using the transport demand model and inoperability input-output Model. The result shows that the amount of production loss caused by the heavy snow is KRW 2,460 billion per year and if the period of snowfall removal is shortened by one day or two days, it could be reduced to KRW 1,219 or 2,787 billion in production loss.

Regional snows scenario for the support systems Analysis (지역별 제설 시나리오 응원체계 구축연구)

  • Kim, Heejae;Oak, Youngsuk;Kim, Geunyoung
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.163-172
    • /
    • 2017
  • Because of abnormal weather, a heavy snow on the Northern latitudes occurs frequently. This has resulted in significant damage and recovery costs. In korea, it has been declared a special disaster area due to heavy snowfall in Gangneung and Pohang 2004, 2005 and 2011, so there was a revision of action instruction for the road snow removal. Although, in our current system, snow removing methodology, regional equipment holdings, and snow responsible interval, respectively, has been classified by the National Highway, near cities and provinces support system not yet prepared. Only, if snow removing is not possible within the region itself, which contained the contents of "support and assistance to military or nearby offices requests". In this thesis, we studied the disaster scenario development according to heavy snow and the response and support system to the features of each regional. For the scenario deduction, we preferentially collected day snowfall and disaster yearbook data to regionals, classified similar pattern and plotted GIS snow map. We also classified heavy snow disaster by region and type and we deduced five-step scenario. The five-step scenario is nationwide(1st-stage), the National Capital region(2nd-stage), the Chungcheong Provinces(3rd-stage), the Kangwon province(4th-stage) and the Ch?l a provinces(5th-stage). Therefore we build near provinces support system according to five-step scenario.

Estimating Equipment and vehicle Demands for Snow Removal Tasks by Road Snow Removal Scenarios (도로 제설 시나리오별 소요 제설장비 및 차량 추정에 관한 연구)

  • Kim, Heejae;Kim, Sunyoung;Kim, Geunyoung
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.2
    • /
    • pp.199-212
    • /
    • 2017
  • Rapid roadway snow removal is significantly important due to difficult occurrence estimation of heavy snowfall disasters by global warming and climate change. Local governments of S. Korea have snow removal equipments and vehicles based on past experiences without considering snowfall and roadway characteristics. The objective of this research is to develop the demand estimation procedure for snow removal equipments and vehicles based on regional snowfall and roadway characteristics. This research first classifies regional snowfall characteristics using KMO's ten-year snowfall data. Second, roadway snow removal length is computed for local governments. Real possession data is compared with demand estimation of snow removal equipments & vehicles for each local government with roadway snow removal scenarios. Finally, required demands of snow removal equipments & vehicles are predicted by concerning regional snowfall amount and required snow removal hours. Results from this research are used for developing heavy snowfall disaster management policies for optimal demands and snow removal routes of 229 local governments.

A method for Assessment of landslide potentialities using GIS (GIS를 이용한 산사태 발생잠재가능성 평가 기법)

  • Yang In-Tae;Chun Ki-Sun;Lee Sang-Yun;Lee In-Yeop
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.313-318
    • /
    • 2006
  • The main cause of natural disaster in Korea is meteorological phenomenon, such as typhoon, heavy rain, storm, rainstorm, heavy snow, hailstorm, overflowing of sea and so on(including thunderstroke, blast, snow damage, freezing and earthquake), and among those disasters, heavy rain takes place most often, and it occupies 80% of total disaster Especially, disaster related to slope collapse (landslide, collapse of retaining wall, burying ect.) takes place every year due to meteorological cause such as localized heavy rain, which is getting stronger. (National Institute for Prevention Disaster, 2002, Meteorological Administration) Accordingly, it is necessary to analyze the features of slope collapse related to natural disaster in Korea, and also to make up counterplan to prevent disaster. This paper will try to analyze potential areas which are susceptible to landslide regarding factors inducing landslide and heavy rain, and to evaluate the potentiality of landslide regarding local particularity of rainfall, furthermore to provide essential information for development of community such as preventing damages from landslide, construction Industry, and effective use of land.

  • PDF

A Study on the Design of Relay Terminal Analysis Tool and Real-time Monitoring System for Driving Control Information of Snow-Removal Vehicles (제설차량의 운행정보 실시간 모니터링 시스템 및 중계단말 분석 도구 설계에 관한 연구)

  • Lee, Yang Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.713-718
    • /
    • 2014
  • This paper proposed a real-time monitoring system that can realize effective operation of snowplows each of the local autonomous entities secures to cope with disasters in Korea like a wintertime heavy snowfall and also can promptly cope with the spot facing a heavy snowfall disaster by doing real-time monitoring on the information of the snow-removal site and the mobility of the vehicles. Also, the study has designed a relay terminal analysis tool so that the proposed system can analyze all kinds of controlling information and diagnose the relay terminal effectively. The proposed system can realize effective and emergent coping with the situations of a heavy snowfall disaster through real-time routing trace as well as effective work progress within a short time by doing real-time monitoring on the information about the status of snow-removal work and vehicle controlling for snow-removal work as well as the location information of snow-removal vehicles in the situations of a heavy snowfall.

Heavy Snowfall Disaster Response using Multiple Satellite Imagery Information (다중 위성정보를 활용한 폭설재난 대응)

  • Kim, Seong Sam;Choi, Jae Won;Goo, Sin Hoi;Park, Young Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.4
    • /
    • pp.135-143
    • /
    • 2012
  • Remote sensing which observes repeatedly the whole Earth and GIS-based decision-making technology have been utilized widely in disaster management such as early warning monitoring, damage investigation, emergent rescue and response, rapid recovery etc. In addition, various countermeasures of national level to collect timely satellite imagery in emergency have been considered through the operation of a satellite with onboard multiple sensors as well as the practical joint use of satellite imagery by collaboration with space agencies of the world. In order to respond heavy snowfall disaster occurred on the east coast of the Korean Peninsula in February 2011, snow-covered regions were analyzed and detected in this study through NDSI(Normalized Difference Snow Index) considering reflectance of wavelength for MODIS sensor and change detection algorithm using satellite imagery collected from International Charter. We present the application case of National Disaster Management Institute(NDMI) which supported timely decision-making through GIS spatial analysis with various spatial data and snow cover map.

Structural Improvement of the Shading Structures against Meteorological Disasters in Ginseng Fields (인삼재배 해가림시설의 기상재해와 구조개선대책)

  • 남상운
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.4
    • /
    • pp.98-106
    • /
    • 2003
  • In order to set up structural improvement strategy against meteorological disasters of the shading structures in ginseng fields, structural safety analyses as well as some case studies of structural damage patterns were carried out. According to the results of structural safety analysis, allowable safe snow depth for type B(wood frame with single span) was 25.9 cm, and those for type A(wood frame with multi span) and type C and D (steel frame with multi span) were 17.6 cm, 25.8 cm, and 20.0 cm respectively. So types of shading structures should be selected according to the regional design snow depth. An experiential example study on meteorological disasters indicated that a strong wind damage was experienced once every 20 years, and a heavy snow damage once every 9.5 years. The most serious disasters were caused by heavy snow and it was found that a half break and complete collapse of structures were experienced by about 70% of snow damage. In addition to maintenance, repair and reinforcement, it is also recommended that improved model of shading structures for ginseng cultivation should be developed as a long term countermeasures against meteorological disasters.

Heavy Snow Vulnerability in South Korea Using PSR and DPSIR Methods (PSR과 DPSIR을 이용한 대한민국 대설 취약성 분석)

  • Keunwoo Lee;Hyeongjoo Lee;Gunhui Chung
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.345-352
    • /
    • 2023
  • Recently, the risk of snow disasters has been increasing South Korea. The damages of heavy snow were categorized into direct and indirect. Direct damage is usually the collapse of buildings as houses, greenhouse or barns. Indirect damage is various, for example, traffic congestion, traffic acident, drop damage, and so on. In South Korea, direct damage is severe in rural area, mosty collapse of greenhouse or barns. However, indirect damage such as traffic accident is mostly occurred in urban area. Therefore, the regional characteristics should be considered when vulnerability is evaluated. Therefore, in this study, the PSR and DPSIR method were applied by regional scale in South Korea. The PSR evaluation method is divided into pressure, state, and reaction index. however, the DPSIR evaluation method is divided into Driving force, Pressure, State, Impact, and Response index. the DPSIR evaluation method is divided into Driving force, Pressure, State, Impact, and Response index. Data corresponding to each indicator were collected, and the weight was calculated using the entropy method to calculate the snowfall vulnerability index by regional scale in South Korea. Calculated heavy snow damage vulnerabilities from the two methods were compared. The calculated vulnerabilities were validated using the recent snow damage in South Korea from 2018 to 2022. Snow vulnerability index calculated using the DPSIR method showed more reliable results. The results of this study could be utilized as an information to prepare the mitigation of heavy snow damage and to establish an efficient snow removal response system.