• Title/Summary/Keyword: disaster and safety information

Search Result 926, Processing Time 0.027 seconds

A Research on Applicability of Drone Photogrammetry for Dam Safety Inspection (드론 Photogrammetry 기반 댐 시설물 안전점검 적용성 연구)

  • DongSoon Park;Jin-Il Yu;Hojun You
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.5
    • /
    • pp.30-39
    • /
    • 2023
  • Large dams, which are critical infrastructures for disaster prevention, are exposed to various risks such as aging, floods, and earthquakes. Better dam safety inspection and diagnosis using digital transformation technologies are needed. Traditional visual inspection methods by human inspectors have several limitations, including many inaccessible areas, danger of working at heights, and know-how based subjective inspections. In this study, drone photogrammetry was performed on two large dams to evaluate the applicability of digital data-based dam safety inspection and propose a data management methodology for continuous use. High-quality 3D digital models with GSD (ground sampling distance) within 2.5 cm/pixel were generated by flat double grid missions and manual photography methods, despite reservoir water surface and electromagnetic interferences, and severe altitude differences ranging from 42 m to 99.9 m of dam heights. Geometry profiles of the as-built conditions were easily extracted from the generated 3D mesh models, orthomosaic images, and digital surface models. The effectiveness of monitoring dam deformation by photogrammetry was confirmed. Cracks and deterioration of dam concrete structures, such as spillways and intake towers, were detected and visualized efficiently using the digital 3D models. This can be used for safe inspection of inaccessible areas and avoiding risky tasks at heights. Furthermore, a methodology for mapping the inspection result onto the 3D digital model and structuring a relational database for managing deterioration information history was proposed. As a result of measuring the labor and time required for safety inspection at the SYG Dam spillway, the drone photogrammetry method was found to have a 48% productivity improvement effect compared to the conventional manpower visual inspection method. The drone photogrammetry-based dam safety inspection is considered very effective in improving work productivity and data reliability.

X3D Based Web Visualization by Data Fusion of 3D Spatial Information and Video Sequence (3D 공간정보와 비디오 융합에 의한 X3D기반 웹 가시화)

  • Sohn, Hong-Gyoo;Kim, Seong-Sam;Yoo, Byoung-Hyun;Kim, Sang-Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.4
    • /
    • pp.95-103
    • /
    • 2009
  • Global interests for construction of 3 dimensional spatial information has risen due to development of measurement sensors and data processing technologies. In spite of criticism for the violation of personal privacy, CCTV cameras equipped in outdoor public space of urban area are used as a fundamental sensor for traffic management, crime prevention or hazard monitoring. For safety guarantee in urban environment and disaster prevention, a surveillance system integrating pre-constructed 3 dimensional spatial information with CCTV data or video sequence is needed for monitoring and observing emergent situation interactively in real time. In this study, we proposed applicability of the prototype system for web visualization based on X3D, an international standard of real time web visualization, by integrating 3 dimensional spatial information with video sequence.

  • PDF

Construction of Earthquake Disaster Management System Based on Seismic Performance Evaluation of Architectural Structure (건축물 내진성능평가에 의한 지진재해관리정보체계 구축)

  • Kim, Seong-Sam;Cho, Eun-Rae;Yoon, Jeong-Bae;Yoo, Hwan-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.3
    • /
    • pp.59-67
    • /
    • 2007
  • This paper proposes potentialities of constructing the information system for earthquake hazard management which can manage and analyse earthquake risk and hazard systematically. The experimental results as well as architectural structure investment data for seismicity assessment are built in database and connected with GIS for assessing earthquake safety of building in urban area. For earthquake-resistant performance assessment, we collected and classified building structural data according to assessment criteria using building register, architectural map, digital map, and then complemented database with field survey data. We also suggest GIS-based information system can cope with and manage earthquake hazard effectively, as evaluating earthquake risk by performing detailed earthquake-resistant assessment and determining final assessment scores. The assessment should be processed quickly and accurately by integrating the earthquake hazard information management system with modularization of assessment procedure and method in the future.

  • PDF

Evaluation of Soil Compaction Using Gravity Field Interpretation and UAV-based Remote Sensing Information (중력 데이터 해석과 드론원격정보를 이용한 지반의 다짐도 평가)

  • Kim, Sung-Wook;Choi, Sungchan;Choi, Eun-Kyoung;Lee, Yeong-Jae;Go, Daehong;Lee, Kyu-Hwan
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.283-293
    • /
    • 2021
  • The homogeneity of the compacted ground was analyzed using drone-based remote terrain and gravity field data. Among the topographic elements calculated by the hydrological algorithm, the topographic curvature effectively showed the shape of the surface that occurred during the compaction process, and the non-uniformly compacted area could be identified. The appropriate resolution of the digital topography requires a precision of about 10 cm. Gravity field Interpretation was performed to analyze the spatial density change of the compacted ground. In the distribution of residual bouguer gravity anomaly, the non-homogeneously compacted area showed a different magnitude of gravity than the surrounding area, and the difference in compaction was identified through gravity-density modeling. From the results, it is expected that the topographic element and gravitational field analysis method can be used to evaluate the homogeneity of the compacted ground.

Factors and Satisfaction in Selecting University and Departments of One University freshmen

  • Kim, Tae-Sun;Hong, Sun-Yeun;Hur, Hwa-La;Park, Gang-woo;Park, Jin-Sik;Lee, Chang-Soo;Ha, Jong-Uk;Shin, Hwa-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.203-212
    • /
    • 2022
  • In this paper, we propose to identify the factors and satisfaction of the selection of University and departments of One university freshmen. Research subjects were 499 freshmen in 2021 at K University located in G city. The data were analyzed by descriptive statistics, t-test, ANOVA, Scheffe' test and pearson's correlation coefficient using SPSS WIN 18.0. The results of this study showed that the internet/SNS was the highest in university information media, the school teacher was the highest in information provider, and the employment rate had the most impact on university registration decision. The University satisfaction score was 3.43, and there was a significant difference in gender(t=5.527, p=.019) and admission type(F=5.527, p<.001). The department satisfaction was 3.86 and there was a significant difference in the admissions type(F=3.004, p=.018). Univdrsity satisfaction and Department satisfaction showed a significant positive correlation(r=5.527, p<.001). Universities should improve their competitiveness through systematic admission information system.

A Study on the Heat Release Characteristics of Fire Load for Performance Based Design of Multiplexes: A Focus on the Heat Release Rate and Fire Spread Rate of Cinema Seats (복합영상관의 성능위주설계를 위한 가연물의 연소발열특성 연구: 객석의자의 열발생률 및 연소확산속도를 중심으로)

  • Nam, Dong-Gun;Jang, Hyo-Yeon;Hwang, Cheol-Hong;Lim, Ohk-Kun
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.11-17
    • /
    • 2020
  • As performance-based design (PBD) has a direct impact on evacuation safety assessments, designing fire scenarios based on real fire tests is essential. To improve the reliability of the PBD for fire safety in multiplexes, information on fire behavior, such as heat release rate (HRR) and fire spread rate, are provided in this study by conducting a standard fabric flammability test. To this end, several chairs were arranged in a pattern that resembled a theater-style seating. The peak HRR and heating value per unit mass for each chair ranged from 415 kW to 988 kW and 15.2 MJ/kg to 23.8 MJ/kg, respectively. The heating values per unit mass of the new and old chairs were 23.6 MJ/kg and 16.7 MJ/kg, respectively. As the quantity of plastic and cushioning materials in the new chairs was more than that of the old ones, the new chairs were more vulnerable to fire hazards. Furthermore, when the chairs were arranged in a line, the fire spread rate was observed to be 0.39-0.42 m/min, regardless of the ignition location. Finally, a fire growth curve showing the peak HRR and fire spread rate was also demonstrated.

Concepts of Disaster Prevention Design for Safety in the Future Society

  • Noh, Hwang-Woo;Kitagawa, Keiko;Oh, Yong-Sun
    • International Journal of Contents
    • /
    • v.10 no.1
    • /
    • pp.54-61
    • /
    • 2014
  • In this paper, we propose a pioneering concept of DPD(Disaster Prevention Design) to realize a securable society in the future. Features of danger in the future society are expected to be diverse, abrupt occurring, large scale, and complicated ways. Due to increment of dangers with their features of uncertainty, interactivity, complexity, and accumulation, human-oriented design concept naturally participates in activities to prevent our society against disasters effectively. We presented DPD is an essential design activity in order to cope with dangers expected in the future societies as well as realize securable environments. DPD is also an integrated design aids including preemptive protections, rapid preparing, recovery, and interactive cooperation. We also expect these activities of DPD is effective for generation of new values in the market, satisfaction of social needs, expansion of design industry, and a novel chance for development in the future society. Throughout this paper, we submit various aspects of DPD concepts including definition, classification, scope, necessity, strategy, influencing elements, process, and its principle. We expect these concepts will be the seed and/or basement of DPD research for the future works. For the direction of study for DPD in the future, we emphasize alarm system for preemptive protection rather than recovery strategy for the damage occurred. We also need to research about progressive prevention techniques and convergence with other areas of design. In order to transfer the concept of product design from facility-oriented mechanism to human-oriented one, we should develop new kinds of city basis facilities, public-sense design concepts referred to social weak-party, e-Learning content design preparing disasters, and virtual simulation design etc. On the other hand, we have to establish laws and regulations to force central and/or provincial governments to have these DPD strategies applying their regional properties. Modern design activities are expanding to UI(user interface) content design area overcoming the conventional design concept of product and/or service. In addition, designers are recognized as art directors or life stylists who will change the human life and create the social value. DPD can be divided into prevention design, preparedness design, response design, and recovery design. Five strategies for successful DPD are Precaution-oriented, Human-oriented, Sense-oriented, Legislation, and Environment Friendly Strategies.

Heavy Snow Vulnerability in South Korea Using PSR and DPSIR Methods (PSR과 DPSIR을 이용한 대한민국 대설 취약성 분석)

  • Keunwoo Lee;Hyeongjoo Lee;Gunhui Chung
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.345-352
    • /
    • 2023
  • Recently, the risk of snow disasters has been increasing South Korea. The damages of heavy snow were categorized into direct and indirect. Direct damage is usually the collapse of buildings as houses, greenhouse or barns. Indirect damage is various, for example, traffic congestion, traffic acident, drop damage, and so on. In South Korea, direct damage is severe in rural area, mosty collapse of greenhouse or barns. However, indirect damage such as traffic accident is mostly occurred in urban area. Therefore, the regional characteristics should be considered when vulnerability is evaluated. Therefore, in this study, the PSR and DPSIR method were applied by regional scale in South Korea. The PSR evaluation method is divided into pressure, state, and reaction index. however, the DPSIR evaluation method is divided into Driving force, Pressure, State, Impact, and Response index. the DPSIR evaluation method is divided into Driving force, Pressure, State, Impact, and Response index. Data corresponding to each indicator were collected, and the weight was calculated using the entropy method to calculate the snowfall vulnerability index by regional scale in South Korea. Calculated heavy snow damage vulnerabilities from the two methods were compared. The calculated vulnerabilities were validated using the recent snow damage in South Korea from 2018 to 2022. Snow vulnerability index calculated using the DPSIR method showed more reliable results. The results of this study could be utilized as an information to prepare the mitigation of heavy snow damage and to establish an efficient snow removal response system.

Planning Evacuation Routes with Load Balancing in Indoor Building Environments (실내 빌딩 환경에서 부하 균등을 고려한 대피경로 산출)

  • Jang, Minsoo;Lim, Kyungshik
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.7
    • /
    • pp.159-172
    • /
    • 2016
  • This paper presents a novel algorithm for searching evacuation paths in indoor disaster environments. The proposed method significantly improves the time complexity to find the paths to the evacuation exit by introducing a light-weight Disaster Evacuation Graph (DEG) for a building in terms of the size of the graph. With the DEG, the method also considers load balancing and bottleneck capacity of the paths to the evacuation exit simultaneously. The behavior of the algorithm consists of two phases: horizontal tiering (HT) and vertical tiering (VT). The HT phase finds a possible optimal path from anywhere of a specific floor to the evacuation stairs of the floor. Thus, after finishing the HT phases of all floors in parallel the VT phase begins to integrate all results from the previous HT phases to determine a evacuation path from anywhere of a floor to the safety zone of the building that could be the entrance or the roof of the building. It should be noted that the path produced by the algorithm. And, in order to define the range of graph to process, tiering scheme is used. In order to test the performance of the method, computing times and evacuation times are compared to the existing path searching algorithms. The result shows the proposed method is better than the existing algorithms in terms of the computing time and evacuation time. It is useful in a large-scale building to find the evacuation routes for evacuees quickly.

Rapid Self-Configuration and Optimization of Mobile Communication Network Base Station using Artificial Intelligent and SON Technology (인공지능과 자율운용 기술을 이용한 긴급형 이동통신 기지국 자율설정 및 최적화)

  • Kim, Jaejeong;Lee, Heejun;Ji, Seunghwan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.9
    • /
    • pp.1357-1366
    • /
    • 2022
  • It is important to quickly and accurately build a disaster network or tactical mobile communication network adapting to the field. In configuring the traditional wireless communication systems, the parameters of the base station are set through cell planning. However, for cell planning, information on the environment must be established in advance. If parameters which are not appropriate for the field are used, because they are not reflected in cell planning, additional optimization must be carried out to solve problems and improve performance after network construction. In this paper, we present a rapid mobile communication network construction and optimization method using artificial intelligence and SON technologies in mobile communication base stations. After automatically setting the base station parameters using the CNN model that classifies the terrain with path loss prediction through the DNN model from the location of the base station and the measurement information, the path loss model enables continuous overage/capacity optimization.