• Title/Summary/Keyword: direction of rainfall field

Search Result 14, Processing Time 0.026 seconds

Development of Geometric Moments Based Ellipsoid Model for Extracting Spatio-Temporal Characteristics of Rainfall Field (강우장의 시공간적 특성 추출을 위한 기하학적 모멘트 기반 등가타원 모형 개발)

  • Kwon, Hyun-Han;So, Byung-Jin;Kim, Min-Ji;Pack, Se-Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.6B
    • /
    • pp.531-539
    • /
    • 2011
  • It has been widely acknowledged that climate system associated with extreme rainfall events was difficult to understand and extreme rainfall simulation in climate model was more difficult. This study developed a new model for extracting rainfall filed associated with extreme events as a way to characterize large scale climate system. Main interests are to derive location, size and direction of the rainfall field and this study developed an algorithm to extract the above characteristics from global climate data set. This study mainly utilized specific humidity and wind vectors driven by NCEP reanalysis data to define the rainfall field. Geometric first and second moments have been extensively employed in defining the rainfall field in selected zone, and an ellipsoid based model were finally introduced. The proposed geometric moments based ellipsoid model works equally well with regularly and irregularly distributed synthetic grid data. Finally, the proposed model was applied to space-time real rainfall filed. It was found that location, size and direction of the rainfall field was successfully extracted.

Analyses of Characteristics and Causes of Landslides due to Locally Concentrated Heavy Rainfall in Inje Area (국지성 집중호우로 인한 인제군 산사태 발생 특성 및 원인 분석)

  • Lee, Dong-Won;Byun, In-Ho;Yoo, Nam-Jae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.161-170
    • /
    • 2010
  • This paper is results of analyzing causes of damage and rainfall characteristics to investigate characteristics of landslide occurrence and its causes at Inje area in Gangwondo around July in 2006 through collection of related data, literature review and field reconnaissance. From results of analyzing the geometrical characteristics of landslide slope, the slope width of showing the most probable frequency were in the range of 10~50m and the most frequent slope angle was in the range of $30{\sim}40^{\circ}$. The most probable elevation of slope was 200~300m. For the slope direction of landslides, the most frequent directions were NW and SE.

  • PDF

Field Test Facilities for Composite Long Rod Insulator (고분자(高分子) 장간애자용(長幹碍子用) 옥외(屋外)시험장(試驗場) 구축(構築))

  • Hahn, Key-Man;Kim, Dong-Wook;Kwon, Hyuk-Sam;Yoo, Sung-Jong
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1499-1501
    • /
    • 1994
  • This paper studies on the outdoor field test facilities which are established for weather-resist and mechanical-resist property teat of composite insulator. We have established measuring and data acquisition system for various test conditions -leakage current, temperature, humidity, wind direction, wind velocity and rainfall. The merry-go-round test and salt fog test have been studied in order to evaluate non tracking property of rubber material. Especially we have checked the relationship between hydrophobicity and outdoor exposure degree by contact angle measurement.

  • PDF

Assessment of geological hazards in landslide risk using the analysis process method

  • Peixi Guo;Seyyed Behnam Beheshti;Maryam Shokravi;Amir Behshad
    • Steel and Composite Structures
    • /
    • v.47 no.4
    • /
    • pp.451-454
    • /
    • 2023
  • Landslides are one of the natural disasters that cause a lot of financial and human losses every year It will be all over the world. China, especially. The Mainland China can be divided into 12 zones, including 4 high susceptibility zones, 7 medium susceptibility zones and 1 low susceptibility zone, according to landslide proneness. Climate and physiography are always at risk of landslides. The purpose of this research is to prepare a landslide hazard map using the Hierarchical Analysis Process method. In the GIS environment, it is in a part of China watershed. In order to prepare a landslide hazard map, first with Field studies, a distribution map of landslides in the area and then a map of factors affecting landslides were prepared. In the next stage, the factors are prioritized using expert opinion and hierarchical analysis process and nine factors including height, slope, slope direction, geological units, land use, distance from Waterway, distance from the road, distance from the fault and rainfall map were selected as effective factors. Then Landslide risk zoning in the region was done using the hierarchical analysis process model. The results showed that the three factors of geological units, distance from the road and slope are the most important have had an effect on the occurrence of landslides in the region, while the two factors of fault and rainfall have the least effect The landslide occurred in the region.

Current Status of Intensive Observing Period and Development Direction (집중관측사업의 현황과 발전 방향)

  • Kim, Hyun Hee;Park, Seon Ki
    • Atmosphere
    • /
    • v.18 no.2
    • /
    • pp.147-158
    • /
    • 2008
  • Domestic IOP (intensive observing period) has mostly been represented by the KEOP (Korea Enhanced Observing Period), which started the 5-yr second phase in 2006 after the first phase (2001-2005). During the first phase, the KEOP had focused on special observations (e.g., frontal systems, typhoons, etc.) around the Haenam supersite, while extended observations have been attempted from the second phase, e.g., mountain and downstream meteorology in 2006 and heavy rainfall in the mid-central region and marine meteorology in 2007. So far the KEOP has collected some useful data for severe weather systems in Korea, which are very important in understanding the development mechanisms of disastrous weather systems moving into or developing in Korea. In the future, intensive observations should be made for all characteristic weather systems in Korea including the easterly in the central-eastern coastal areas, the orographically-developed systems around mountains, the heavy snowfall in the western coastal areas, the upstream/downstream effect around major mountain ranges, and the heavy rainfall in the mid-central region. Enhancing observations over the seas around the Korean Peninsula is utmost important to improve forecast accuracy on the weather systems moving into Korea through the seas. Observations of sand dust storm in the domestic and the source regions are also essential. Such various IOPs should serve as important components of international field campaign such as THORPEX (THe Observing system Research and Predictability EXperiment) through active international collaborations.

Grid Based Rainfall-Runoff Modeling Using Storage Function Method (저류함수기법을 이용한 격자기반의 강우-유출 모형 개발)

  • Shin, Cheol-Kyun;Cho, Hyo-Seob;Jung, Kwan-Sue;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.11
    • /
    • pp.969-978
    • /
    • 2004
  • According to the report of hydrologic modeling study, from a quantitative point of view, a lumped model is more efficient than a distributed model. A distributed model has to simplify geospatial characteristics for the shake of restricted application on computer calculation and field observation. In this reason, a distributed model can not help having some errors of water quantity modelling. However, considering a distribution of rainfall-runoff reflected spatial characteristics, a distributed model is more efficient to simulate a flow of surface water, The purpose of this study is modeling of spatial rainfall-runoff of surface water using grid based distributed model, which is consisted of storage function model and essential basin-channel parameters( slope, flow direction & accumulation), and that procedure is able to be executed at a personal computer. The prototype of this model is developed in Heongseong Multipunose Dam basin and adapted in Hapchon Multipurpose Dam basin, which is larger than the former about five times. The efficiency coefficients in result of two dam basin simulations are more than about 0.9, but ones at the upstream water level gauge station meet with bad result owing to overestimated rating curves in high water level. As a result of this study, it is easily implemented that spatially distributed rainfall-runoff model using GIS, and geophysical characteristics of the catchment, hereafter it is anticipated that this model is easily able to apply rainfall data by real time.

Variation in Phytotoxicity, Movement and Residual Activity of Herbicides in Soil (토양 중에 있어서 제초제의 약해약동, 이동 및 잔효지속성)

  • Hwan-Seung Ryang;Suk-Young Lee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.23 no.3
    • /
    • pp.31-46
    • /
    • 1978
  • In order to secure the proper use of herbicides that are frequently used in Korea, the behavior of herbicides in various type of soil were studied. This study includes the variation of phytotoxicity, leaching and movement, and residual activity period of herbicides depending upon the type of soil etc. Experiments were also conducted to establish a guideline for the selection of herbicides according to the type of soil and the proper use of each herbicide in various type of soil in Korea. Experimental results showed that the behavior of herbicides could be characterized based on the series or kind of herbicides and devided into two major groups. One group (nitrofen. CNP, benthiocarb and butachlor) of herbicides showed relatively little crop injury and was very dependable. The action of this group was not remarkably influenced by soil components, rainfall and the quantity of herbicide used with the type of soil that had small adsorption capacity such as most of soil in Korea. The other group(simazine, 2, 4-D. linuron, alachlor and simetryne) showed a wide variation in it's action and retained potentially injurious effect. This group was very susceptable to using condition as well as the type of soil itself. Based on the results of various experiments the disappearance of the residual activity period of major herbicides used in upland and paddy field and the related factors were explained. It is believed that the results of this study can be used as a base for the establishment of a guideline for the proper use of each herbicide and can suggest a direction of developing new herbicides.

  • PDF

Slope Stability Analysis and Suggestion of Stabilization Methods on Failed Cut-Slopes Interbedded with Weakness Layer (연약층이 협재된 절개면의 안정성 해석 및 대책)

  • 구호본;이대영;김학준
    • The Journal of Engineering Geology
    • /
    • v.13 no.2
    • /
    • pp.157-170
    • /
    • 2003
  • This study is performed to investigate the cause of slope failure and to suggest suitable stabilization methods for the failed rock slopes. The slope which is located along the national highway between Maesan and Kakok in Dangjin-gun failed during the construction of roads. Site investigation, drilling program, field measurements, rainfall records, and stability analyses are used to investigate the cause of the slope failure. The problem determining the cut-slope angle based on the existing design manual for the construction of roads is reviewed based on the case history given in this paper. If weakness layer and geological structures such as folds and faults are developed in a slope, slope failure is possible even though the direction of slope and the direction of discontinuities depart more than $30^{\circ}$.

Estimation of Soil Erosion and Sediment Yield in Mountainous Stream (산지형 하천의 토양침식 및 토사유출량 산정)

  • Ko, Jae-Wook;Yang, Sung-Kee;Yang, Won-Seok;Jung, Woo-Yeol;Park, Cheol-Su
    • Journal of Environmental Science International
    • /
    • v.22 no.5
    • /
    • pp.599-608
    • /
    • 2013
  • Jeju island, which is located along the moving path of typhoon, suffers from flooding and overflow by torrential rain. So abrupt runoff occurring, damages of downstream farm field and shore culturing farms are increasing. In this study, Oaedo stream, one of the mountainous streams on Jeju island, was selected as the basin of study subject and was classified into 3 sub-basins, and after the characteristics of subject basin, the soil erosion amount and the sediment delivery of the stream by land usage distribution were estimated with the use of SATEEC ArcView GIS, the sediment yield amount of 2000 and 2005 was analyzed comparatively. As a result of estimating the sediment yield amount of 2000, the three sub-basins were respectively 12,572.7, 14,080 and 157,761 tons/year. and sediment yield amounts were estimated as 35,172.9, 5,266 and 258,535 tons/year respectively in 2005. The soil erosion and sediment yield amount of 2005 using single storm rainfall were estimated high compared with 2000, but for sub-basin 2, the values rather decreased due to changes in land use, and the land coverage of 2005, since there are many classifications of land usage compared with 2000, enabling to reflect more accurate land usage condition, could deduce appropriate results. It is anticipated that such study results can be utilized as basic data to propose a direction to predict the amount of sediment yield that causes secondary flooding damage and deteriorates water quality within detention pond and grit chamber, and take action against damages in the downstream farm field and shore culturing farms.

Modeling the effects of excess water on soybean growth in converted paddy field in Japan 1. Predicting groundwater level and soil moisture condition - The case of Biwa lake reclamation area

  • Kato, Chihiro;Nakano, Satoshi;Endo, Akira;Sasaki, Choichi;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.315-315
    • /
    • 2017
  • In Japan, more than 80 % of soybean growing area is converted fields and excess water is one of the major problems in soybean production. For example, recent study (Yoshifuji et al., 2016) suggested that in the fields of shallow groundwater level (GWL) (< 1m depth), rising GWL even in a short period (e.g. 1 day) causes inhibition of soybean growth. Thus it becomes more and more important to predict GWL and soil moisture in detail. In addition to conventional surface drainage and underdrain, FOEAS (Farm Oriented Enhancing Aquatic System), which is expected to control GWL in fields adequately, has been developed recently. In this study we attempted to predict GWL and soil moisture condition at the converted field with FOEAS in Biwa lake reclamation area, Shiga prefecture, near the center of the main island of Japan. Two dimensional HYDRUS model (Simuinek et al., 1999) based on common Richards' equation, was used for the calculation of soil water movement. The calculation domain was considered to be 10 and 5 meter in horizontal and vertical direction, respectively, with two layers, i.e. 20cm-thick of plowed layer and underlying subsoil layer. The center of main underdrain (10 cm in diameter) was assumed to be 5 meter from the both ends of the domain and 10-60cm depth from the surface in accordance with the field experiment. The hydraulic parameters of the soil was estimated with the digital soil map in "Soil information web viewer" and Agricultural soil-profile physical properties database, Japan (SolphyJ) (Kato and Nishimura, 2016). Hourly rainfall depth and daily potential evapo-transpiration rate data were given as the upper boundary condition (B.C.). For the bottom B.C., constant upward flux, which meant the inflow flux to the field from outside, was given. Seepage face condition was employed for the surrounding of the underdrain. Initial condition was employed as GWL=60cm. Then we compared the simulated and observed results of volumetric water content at depth of 15cm and GWL. While the model described the variation of GWL well, it tended to overestimate the soil moisture through the growing period. Judging from the field condition, and observed data of soil moisture and GWL, consideration of soil structure (e.g. cracks and clods) in determination of soil hydraulic parameters at the plowed layer may improve the simulation results of soil moisture.

  • PDF