• Title/Summary/Keyword: direction finding

Search Result 552, Processing Time 0.03 seconds

The phase correction method for the interferometer direction-finding system (인터페로미터 방향탐지 시스템의 위상보정 방법)

  • Lee, Jung-hoon;Jo, Jeil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.355-356
    • /
    • 2018
  • An interferometer is antenna system composed fo two or more elements that can be used to determine the diretion of arrival (DOA) of a received signal by measuring the relative phase between receiving elements. In order to minimize the error of the direction-finding accuracy in interferometer direction-finding system (DFS), the phase correction is accomplished. In this paper, the several methods for the phase correction are classified and the advantage and disadvantage of those methods are compared.

  • PDF

A Study on Performance Improvement of Electroic Warfare Direction Finding System in Muiti Radio Environment (다중 전파 환경에서의 전자전 방향탐지 시스템 성능향상에 관한 연구)

  • Choi, Sun-ho;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.206-209
    • /
    • 2016
  • High end commercial communication system, such as contemporary mobile technology (CDMA, LTE, Wi-FI, etc.) and extension of frequency band, may affect the performance of the shipborne electronic support measurement system in modern battle field. In this paper, we suggest a way to improve the performance of electronic warfare system based on direction finding algorithm simulation after discussing the limits of traditional system.

  • PDF

Decision-Theoretic Approach to Source Direction Finding in Array Sensor Systems

  • Cheung, Wan-Sup
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1993.06a
    • /
    • pp.201-205
    • /
    • 1993
  • A decision-theoretic concept is introduced to investigate whether targets of interest in array sensor systems are present at some steering direction or not. The solutions to this problem are described as a set of simple numbers 0 or 1 corresponding to the direction under consideration. This coded number representation is transplanted in the optimisation technique based on the Hopfield neural network, which may provide a new aspect of determining the direction of arrival (DOA) of sources. To cast the perspectives of the proposed approach and illustrate its effectiveness in source direction finding in array sensor systems, simulation results and related discussions are presented in this paper.

  • PDF

A Study on Radiation Char acter istics of Electr ically Small Antenna for Low-VHF Band Direction Finding according to Tank Mounting Position (Low-VHF 대역 방향탐지용 소형 안테나의 탱크 장착 위치에 따른 방사특성 연구)

  • Moon, Sang-Man;Woo, Jong-Myung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.127-134
    • /
    • 2014
  • This paper presents a study on the radiation characteristics of low-VHF band electrically small antenna for direction finding. Firstly, it is simulated the antenna for mounting on flat ground and tank model(in 40MHz), and measured for mounting 1/10 scaled model(in 400 MHz). In case of flat ground feed at ${\phi}=0^{\circ}$, $180^{\circ}$(xz-plane), yz-plane $E_{\phi}$ (H-plane) and xz-plane $E_{\theta}$ (E-plane) radiation patterns are hemispheric omni-direction due to effect of narrow ground side. Then, in case of tank model, it is shown equally in case of the flat ground, yz-plane $E_{\phi}$ (H-plane) and xz-plane $E_{\theta}$ (E-plane) radiation patterns are hemispheric omni-direction nearly without effect of mounting position. Therefore, the suggested electrically small antenna for direction finding, in case of mounting on ground narrow side xz-plane(E-plane), is shown more stable radiation patterns as direction finding antenna.

A Study on Optimal Hydrophone Arrangement for The Direction Finding of High Speed Moving Target in Underwater (수중에서 고속 기동하는 표적의 방위 탐지를 위한 최적의 청음기 배치 연구)

  • Han, Min-Su;Choi, Jae-Yong;Kang, Dong-Seok;Son, Kweon;Lee, Phil-ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.369-375
    • /
    • 2017
  • One of good DF(Direction Finding) methods is based on TDOA(Time Difference of Arrival) estimation when finding underwater moving target. For small DF error, high time resolution A/D(Analog-to-digital) conversion board and long baseline are needed. But the result of sea trial about close-range and high speed moving target, spatial correlation coefficient and appeared poor properties below 0.3 when hydrophone arrangement are separated over 6 ${\lambda}$ because of underwater fading channel. And we also find out that the distance between hydrophone should be under 4 ${\lambda}$ apart to take advantage of spatial correlation coefficient gain and performance of DF in underwater moving channel environments.

Performance Analysis of Direction Finding Systems Using EM Simulation-based Array Manifolds (EM 시뮬레이션 기반의 어레이 매니폴드를 이용한 방향 탐지 시스템 성능 분석)

  • Kim, Jae-Hwan;Cho, Chihyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.10
    • /
    • pp.1166-1172
    • /
    • 2012
  • In this paper, by using a commercial EM simulator, we could obtain the array manifold which are phase responses of an array antenna for the incident plane wave and then verified the effectiveness of methodology after comparing with the measurement. The result shows that the array manifold can be calculated including not only the phase response of the ideal point sources but also the influences of the mutual coupling between antennas and the installed platform. Also it can exclude the interference of strong broadcasting signal and the disturbance of the multipath in the calibration process. Finally, to predict the performances of direction finding systems, a novel method using both the EM simulation-based receiving signal and the sparsely sampled array manifold with the parabolic estimation is proposed. This method can be utilized in the various fields of direction-finding since it shows the superior predictive performance even in low SNR conditions.

Automatic Determination of the Azimuth Angle of Reflectors in Borehole Radar Reflection Data Using Direction-finding Antenna (방향탐지 안테나를 이용한 시추공 레이다 반사법 탐사에 있어서 반사층 방위각의 자동 결정)

  • Kim Jung-Ho;Cho Seong-Jun;Yi Myeong-Jong;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.3
    • /
    • pp.176-182
    • /
    • 1998
  • The borehole radar reflection survey can image the underground structure with high resolution, however, we cannot get any information on the orientation of the reflectors with dipole antenna alone. The direction-finding antenna system is commonly used to give the solution to the problem. However, the interpretation of the data from direction- finding antenna may be time-consuming, and sometimes have ambiguities in the sense of precise determination of the azimuth. To solve the problem, we developed the automatic azimuth finding scheme of reflectors in borehole radar reflection data using direction-finding antenna. The algorithm is based on finding the azimuthal angle possibly showing the maximum reflection amplitude in the least-squared error sense. The developed algorithm was applied to the field data acquired in quarry mine. It was possible to locate nearly all of the reflectors in three dimensional fashion, which coincide with the known geological structures and man-made discontinuities.

  • PDF

An Amplitude Comparison Direction-Finding Antenna Assembly for Mounting on a Small Flight Vehicle (소형 비행체 탑재를 위한 크기 비교용 방향 탐지 안테나 조립체)

  • Kim, Jaesik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.459-465
    • /
    • 2020
  • In this paper, a compact antenna assembly for an amplitude comparison direction-finding(DF) method for a small flight vehicle is presented. Designed antenna assembly consists of four antennas and it is mounted on a radius of 1.45 λc where λc corresponds to the wavelength of the center frequency. To achieve compactness and robustness of the assembly, the elements are fed by end-launch feeding method and have modified aperture shapes of E- or H-sectoral horns. The feeding part consists of SMA connector, stepped impedance matching structure, and square waveguide of 0.6 λc × 0.6 λc. To achieve different main beam directions for every antenna which is required condition for amplitude comparison DF method, all apertures of the antennas are inclined and it makes the main beam direction of each antenna to top, bottom, left, and right with respect to the axis of the platform. To verify the validation of DF performance of the presented antenna assembly, amplitude comparison curves using measurement results are presented. The bandwidth of the antennas are above 3.2 % in Ku-band(VSWR ≤ 2:1).

The Direction Finding Error of TDOA Method According to the Antenna Arrangement (안테나 배치에 따른 TDOA 방식의 방위탐지 오차)

  • Lim, Joong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4503-4508
    • /
    • 2010
  • A direction finding(DF) technology of a signal is very important for electronic warfare and has studied for a long time. The method of TDOA(time difference of arrival) is one of good DF methods in this time, and that is to receive an emitter signal with two antennas, to measure the time difference of a signal at two antennas, and converse the time difference to direction of the signal. For small DF error, high time resolution receiver and long baseline are needed. In this paper we suggest a good baseline with adaptive antenna arrangement into 10m*10m area.

A Study on Rotation Method Appling Slip-ring of Direction Finding Antenna Mast for Mobile Radio Wave Measurement System (이동형 전파측정시스템에서 슬립링을 적용한 방향탐지 안테나 마스트 회전 방법에 관한 연구)

  • Sohn, Ju-Hang;Han, In-Sung;Kim, Duck-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.499-504
    • /
    • 2017
  • A Mobile Radio Wave Measurement System (MRWMS)is a vehicle-mounted system designed to be operating in a single mission. The mission characteristic for mobile measurement requires mobility. For this, we must consider the arrangement and embedded method of MRWMS's antennas. In this paper, we described the measurement method design of direction detecting accuracy for MRWMS and designed the direction finding antenna mast capable of rotating itself by using a slip ring without turntable for Direction Finding (DF) accuracy test. As we removed the dependency of a limited local area by designing a measurement method of direction detecting accuracy, Equipment Under Test (EUT) zero-Adjustment and mounted process shortened. So, we the reduced production costs. We expect an improved cable loss value by shortening the RF cable length in accordance with our design. In addition, due to the same phenomenon, the entire system is lighter and the mobility is improved.