• Title/Summary/Keyword: direct tunnel

Search Result 198, Processing Time 0.026 seconds

A study on the determination of shear strength and the support design of pre-failed rock slope (일차파괴된 암반사면의 전단강도 및 보강설계법 고찰)

  • 조태진;김영호
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.104-113
    • /
    • 1995
  • Shear strength of the discontinuity on which the pre-failure of rock slope was occurred during surface excavation was measured through the direct shear test using core samples obtained in-situ. Internal friction angle was increased as the roughness of discontinuity surface(JRC) was increased. Results of the tilt test using core samples of higher JRC also showed very similar trend as those of the direct shear test. When the samples replicated from natural cores were used int he tilt test, results of friction angles showed almost perfect continuation of the residual friction angles from the direct shear test. However, when the gouge material existed in the discontinuity the internal friction angle strongly depended upon the rate of filling thickness to the height of asperity irrespective of the JRC. Based on the results of both direct shear test and tilt test internal friction angle and cohesion of discontinuity, which reflect the in-situ conditions fo pre-sliding failure and also can be used for the optimum design of support system, were assessed. Two kinds of support measures which were expected to increase the stability of rock slope were considered; lowering of slope face angle and installation of rock cable. But, it was found that the first method might lead to more unstable conditions of rock slope when the cohesion of discontinuity plane was negligibly low and in that case the support systems of any kind which could exert actual resisting force were needed to ensure the permanent stability of rock slope.

  • PDF

Calculation Method for Nominal Area of Rock Core Specimen During Direct Shear Test (암석코어시편의 절리면 직접전단시험을 위한 겉보기 면적 계산방법)

  • Kang, Hoon;Park, Jung-Wook;Park, Chan;Oh, Tae-Min;Cho, Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.30 no.6
    • /
    • pp.551-558
    • /
    • 2020
  • This note presents the calculation of nominal area for rock core specimen under direct shear testing condition. The initial nominal area was assumed as ellipsoid, and the equations for calculating the nominal area are derived. The normalized shear displacement and normalized nominal area have an identical relationship regardless of the ellipsoid shape. New testing constants and the generalized method were suggested to calculate the decrease of the nominal area. The method was applied to calculate the direct shear testing data and the changes of result were discussed.

Radio Propagation Characteristics in Subway Tunnel at 2.65 GHz (지하철 터널 환경에서 2.65 GHz 대역신호의 전파전파 특성)

  • Choi Myung-Sun;Kim Do-Youn;Jo Han-Shin;Mun Cheol;Yook Jong-Gwan;Park Han-Kyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.5 s.96
    • /
    • pp.541-548
    • /
    • 2005
  • The research deals with the prediction and the measurement of electromagnetic wave propagation in rectangular shaped tunnels at f=2.65 GHz. The received power level was measured in the straight and the curved tunnel by using a spectrum analyzer and Satellite DMB mobile phone. Thus we have gotten the data for two cases, the straight and the curved tunnel whose radius is 300m. In addition, the prediction of wave propagation was conducted based on the ray-launching method, in same tunnel where measurement was performed. A good agreement of the measured and the predicted path loss could be confirmed. The measured path loss shows a marked difference in propagation loss: the path-loss exponent, 3.21, and 3.98, for a straight and a curved tunnel, respectively. The reason that path-loss exponent is high in a curved tunnel is that there is no direct wave but only the reflected waves, which attenuates rapidly with distance due to multiple reflections. Also the predicted path loss shows path loss exeponent, 3.2 and 3.95, for a straight and a curved tunnel which are similar to the simulation results.

Evaluation of excavation damage zone during TBM excavation - A large deformation FE analysis study (TBM 굴착으로 인한 굴착손상영역 범위 추정 - 대변형 수치해석 연구)

  • Seheon Kim;Dohyun Kim
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.1
    • /
    • pp.1-17
    • /
    • 2024
  • Analyzing the tunnel excavation behavior and its effect on the surrounding ground involves large deformation behavior. Therefore, in order to properly simulate the tunnel excavation process and rigorously investigate the actual effect of excavation on surrounding ground and tunnel structure large deformation analysis method is required. In this study, two major numerical approaches capable of considering large deformations behavior were applied to investigate the effect of tunnel boring machine excavation on the surrounding ground: coupled Eulerian-Lagrangian (CEL) and the automatic remeshing (AR) method. Relative performance of both approaches was evaluated through the ground response due to TBM excavation. The ground response will be quantified by estimating the range of the excavation damaged zone (EDZ). By comparing the results, the range of the EDZ will be suggested on the vertical and horizontal direction along the TBM excavation surface. Based on the computed results, it was found that the size of EDZ around the excavation surface and the tendencies was in good agreement among the two approaches. Numerical results clearly show that the size of the EDZ around the tunnel tends to be larger for rock with higher RMR rating. The size of the EDZ is found to be direct proportional to the tunnel diameter, whereas the depth of the tunnel is inversely proportional due to higher confinement stress around the excavation surface.

A Study on Analysis of Construction Monitoring Cost and Improvement Measures of Railway Tunnel Construction in Seoul (서울시 철도터널 건설공사의 공사계측비 분석 및 개선방안 연구)

  • Jong-Tae Woo
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.1
    • /
    • pp.18-30
    • /
    • 2023
  • Purpose: This study is to contribute to the development of monitoring technology through the increase of confidence in construction monitoring by deriving the analysis of construction monitoring cost and improvement measures of railway tunnel construction in Seoul. Method: It presents the status on design and contract of construction monitoring cost, status on application construction monitoring cost and its analysis, analysis on safety management cost and quality management cost, expansion of application of the price calculation standard for monitoring management services to improve this, and monitoring for direct order of ordering organization. Results: If the monitoring management service that was meanwhile ordered as included in the construction work is performed by the directly selected company of ordering organization through the preliminary screening for bidding qualification, then the improvement of monitoring quality and the accurate monitoring data can be secured. Conclusion: For the price calculation standard for monitoring management service, the application of actual cost addition method under the Engineering Promotion Act and the calculation standard of monitoring management cost for standard estimation for ground survey should be extended through the direct order of ordering organization, not the method to be included in the net construction cost where it is performed by a subcontractor via contractor.

A Study on Safe Separation Distance between Tunnel and Interchange (터널과 입체 교차로간의 안전한 이격거리 연구)

  • Lee, In-Bae;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.2
    • /
    • pp.273-279
    • /
    • 2019
  • Development of mountain area is increasing due to the demand for improvement of traffic convenience and development of underdeveloped area. Therefore, there frequently are sections where tunnels and interchanges are located close to each other. These sections do not only affect tunnel planning, types and length of interchanges, but also affect more on route selection. In Korea, several design criteria present each reference value but these values are very similar. In the situation, the minimum value among them is usually applied when planning roads and it could cause traffic safety problems in different site conditions. In this study, the problems of design speed, illuminance adaptation distance, and lane change intervals are analyzed by simulating the cases that the problem could occur when calculating the separation distance between tunnel and interchange. The results obtained from this study can be summarized as following: the driving speed should be applied in case that the site has a big gap between design speed and driving speed because the uniform application of the design speed is not safe; the illuminance adaptation distance should include the influence distance in the section affected by the direct light; in addition, the lane change distance should include the time to perceive the situation of the next lane after the lane change in the section required for successive lane change.

Relationship between Adaptation Luminance and Threshold Zone Luminance for Vehicular Traffic Tunnels (터널 순응휘도와 경계부 휘도의 관계 연구)

  • Cho, Won Bum;Jeong, Jun Hwa
    • International Journal of Highway Engineering
    • /
    • v.16 no.3
    • /
    • pp.85-99
    • /
    • 2014
  • PURPOSES : This study has been performed with the objective to determine threshold zone luminance of adaptation luminance by target safety level in a vehicular traffic tunnel with design speed set at 100km/h. METHODS : The study made a miniature capable of portraying changes in luminance distribution within $2{\times}10^{\circ}$ conical field of view of the driver approaching to the tunnel for the test. Test conditions were set based on justifications for CIE 88-1990's threshold zone luminance used as a reference by domestic tunnel light standards (KS C 3703 : 2010). Luminance contrast of object background and object is 23%, object presentation duration is 0.5 seconds, and size of the object background is $7.3{\times}11.5m^2$ RESULTS : Threshold zone luminance was set within adaptation luminance of $100{\sim}3,000cd/m^2$. Adaptation luminance and threshold zone luminance based on 50%, 75% and 90% target safety level all showed a relatively high linear relationship. According to findings in the study, it is not appropriate to specify the relationship between adaptation luminance and threshold zone luminance as luminance ratio. Rather, direct utilization of the linear relationship gained from the study findings appears to be the better solution. CONCLUSIONS : Findings of this study may be used to determine operation of threshold zone luminance based on target safety level. However, a proper verification and validity of test results are required. Furthermore, a study to determine proper threshold zone luminance level considering target safety level reviewed in this study and various decision-making factors such as economic conditions in Korea and energy-related policies should be carried out in addition. Additional tests on adaptation luminance greater than $3,000cd/m^2$ will be performed, through which application scope of the test findings will be broadened.

Shear Strength and Deformation Behavior of Rock Joint with Roughness (절리면의 거칠기에 따른 암석 절리의 전단강도 및 변형거동에 관한 연구)

  • 이상돈;강준호;이정인
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.261-273
    • /
    • 1994
  • Direct shear tests were carried out on the rock joints and artificial discontinuities to investigate the influence of joint roughness on the shear strength and deformation behaviour. Single direct shear testing apparatus used in experiment was designed and manufactured. Its capacity is 200 tons of shear load, 20 tons of normal load and 50$\textrm{cm}^2$ of maximum shear area. Test samples were cement mortar with artificial discontinuity and sandstone with natural joint. Peak shear strength was increased as joint roughness or normal stress was increased, especially, linearly increased with roughness angle in cement mortar. If joint roughness angle was constant at low normal stress, shear strength was not affected by width and height of joint roughness in cement mortar. Peak shear strengths obtained from tests were larger than the values calculated by Barton's equation, and shear stiffness was increased with joint roughness coefficient.

  • PDF

Development of an In Situ Direct Shear Test Apparatus and Its Field Application (현장직접전단시험기의 개발 및 현장적용에 관한 연구)

  • Kim, Yong-Phil;Lee, Young-Kyun;Lee, Sung-Kook;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.181-191
    • /
    • 2011
  • It is very difficult to prepare a lab. test specimen from weak rock masses affected by faults, highly fractured zone or weathered zone. In conventional method of in situ direct shear test a rock block is sheared inside galleries, where reactions for the hydraulic jacks are available. A new in situ direct shear test apparatus has been developed in this study to perform the test inside galleries as well as open pit conditions. The apparatus is composed of normal and shear reaction plates including load transfer plates, hydraulic cylinder systems, load cells, multistage shear boxes with fixing devices, and needle rollers. Maximum size of the test block is $400{\times}400{\times}460$ mm, and procedures of the test block preparation has been suggested. To explore the field applicability of in situ direct shear test apparatus, proper test block site was investigated by extensive geological field survey. In situ direct shear test has been successful in producing most of information related to strength and deformability of the weak rock.

A Study on Residual Stress Characteristics for Joint of Rock in Ring Shear Tests (링 전단시험기를 이용한 암석절리의 잔류강도 특성에 관한 연구)

  • 권준욱;김선명;윤지선
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.35-41
    • /
    • 2000
  • Residual stress is defined as a minimum stress with a large displacement of specimens and the residual stress after peak shear stress appears with displacement volume but there is no provision to select the residual stress. In the previous study, residual stress was recorded when the change of shear load is small in the condition of the strain more than 15%. But, in this study, hyperbolic function((No Abstract.see full/text), b=experimental constant) of soil test is adapted to joint of rock and the propriety is investigated. In a landslide and landsliding of artificial slope, wedge failure of tunnel with a large displacement, tests are simulated from peak stress to residual stress for safety analysis. But now. direct shear stress and triaxial compressive tests are usually performed to find out characteristics of shear stress about joint. Although these tests get a small displacement, that data of peak stress and residual stress are used for safety analysis. In this study, we tried to determine failure criteria for joints of rock using ring shear test machine. The residual stress following shear behavior was determined by the result of ring shear test and direct shear test. In conclusion, after comparing the results of the two test, we found that cohesion(c) and internal friction angle(ø) of ring shear test are 30% and 22% respectively of those of the direct shear test.

  • PDF