• Title/Summary/Keyword: direct tension

Search Result 235, Processing Time 0.028 seconds

Study on the Soldering of Off-eutectic Pb-Sn Solders in Partial Melting State

  • Park, Jae-Yong;Ha, Jun-Seok;Kang, Choon-Sik;Shin, Kyu-Sik;Kim, Moon-Il;Jung, Jae-Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.63-68
    • /
    • 2000
  • This paper introduces the partial melting process for solder application and characterization of its possibility using off-eutectic Pb-Sn alloy. In order to show that the liquid phase in the semi-liquid state maintains the wettability as the single-phase liquid, the wetting balance test are conducted with varying temperatures and compositions. The results are then compared with the surface tension of liquid, both measured and calculated, to examine the correlation. The results from this investigation indicate that the partial melting can yield satisfactory solder joints as long as the liquid phase acquires sufficient chemical activity. At a condition where the partial melting is effective, a direct correlation between the wettability and the surface tension is found to exist. All alloys are found to show a reasonable wettability in semi-liquid state.

  • PDF

Force density ratios of flexible borders to membrane in tension fabric structures

  • Asadi, H.;Hariri-Ardebili, M.A.;Mirtaheri, M.;Zandi, A.P.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.555-563
    • /
    • 2018
  • Architectural fabrics membranes have not only the structural performance but also act as an efficient cladding to cover large areas. Because of the direct relationship between form and force distribution in tension membrane structures, form-finding procedure is an important issue. Ideally, once the optimal form is found, a uniform pre-stressing is applied to the fabric which takes the form of a minimal surface. The force density method is one of the most efficient computational form-finding techniques to solve the initial equilibrium equations. In this method, the force density ratios of the borders to the membrane is the main parameter for shape-finding. In fact, the shape is evolved and improved with the help of the stress state that is combined with the desired boundary conditions. This paper is evaluated the optimum amount of this ratio considering the curvature of the flexible boarders for structural configurations, i.e., hypar and conic membranes. Results of this study can be used (in the absence of the guidelines) for the fast and optimal design of fabric structures.

A Nonlinear Response Analysis of Tension Leg Platforms in Irregular Waves (불규칙파중의 인장계류식 해양구조물의 비선형 응답 해석)

  • Lee, Chang-Ho;Gu, Ja-Sam;Jo, Hyo-Je;Hong, Bong-Gi
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.33-42
    • /
    • 1998
  • In the presence of incident waves with different frequencies, the second order sum and difference frequency waves due to the nonlinearity of the incident waves come into existence. Although the magnitudes of the forces produced on a Tension Leg Platform(TLP) by these nonlinear waves are small, they act on the TLP at sum and difference frequencies away from those of the incident waves. So, the second order sum and difference frequency wave loads produced close to the natural frequencies of TLPs often give greater contributions to high and low frequency resonant responses. The second order wave exciting forces and moments have been obtained by the method based on direct integration of pressure acting on the submerged surface of a TLP. The components of the second order forces which depend on first order quantities have been evaluated using the three dimensional source distribution method. The numerical results of time domain analysis for the nonlinear wave exciting forces in regular waves are compared with the numerical ones of frequency domain analysis. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Effect of nitroglycerin on isolated rabbit cardiac muscle and coronary strip (적출심근 및 관상동맥에 대한 Nitroglycerin 의 작용)

  • Hong, Jang-Su;Seo, Gyeong-Pil;Kim, Gi-Hwan
    • Journal of Chest Surgery
    • /
    • v.16 no.3
    • /
    • pp.272-280
    • /
    • 1983
  • With respect to controversial opinions concerning the nitroglycerin effects on cardiac muscle the direct nitroglycerin actions were thoroughly studied in isolated papillary muscles, atrial preparations and coronary strips of rabbits. Isometric active tension of papillary muscles developed at $35^{\circ}C$ upon electric stimulation at a rate of 60/min, was not affected by nitroglycerin up to a concentration of 10mg/L Higher concentrations of nitroglycerin, however, reduced action tension progressively. This depression of mechanical activity is accompanied by a decrease in oxygen consumption as measured by means of a flow respirometer. Resting oxygen uptake, on the other hand, remained unchanged. Similarly active tension of spontaneously beating atrial preparations also declined at a nitroglycerin concentration of more than 10 mg/L, whereas the sinus frequency did not change up to 40 mg/L. In contrast, rabbit coronary strips are much more sensitive to nitroglycerin and relax in a range of 10-100 ug/L of nitroglycerin concentration. The results indicate that the pharmacologic effects of nitroglycerin in coronary disease are due to vascular actions, because the plasma levels of nitroglycerin attainable in human therapy are not sufficiently high to directly influence the myocardium.

  • PDF

Evaluation of Tensile Stress-strain Relationship of Masonry Elements (조적요소의 인장응력-변형률 관계 평가)

  • Yang, Keun-Hyeok;Lee, Yongjei;Hwang, Yong-Ha
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.3
    • /
    • pp.27-33
    • /
    • 2019
  • The purpose of this study is to provide and evaluate the tensile properties of masonry element such as tensile strength, strain, modulus of elasticity and stress-strain relationship through the direct tension test with varies of mortar strength. From the experiment, the tension fracture was observed along the interfaces between the brick and the mortar. Tension properties of masonry element was significantly affected by compressive strength of mortar, $f_m$, indicating that higher tensile strength and modulus of elasticity of masonry element were obtained with increase of $f_m$. The strain of a masonry element was inversely proportional to $f_m$ due to the lower ductility of a higher mortar strength. A tensile stress-strain relationship of masonry element was generalized based on the numerical analysis and the regression analysis using test data. The proposed model shows fairly good agreement with the test measurements.

Effects of Laryngeal Massage on Muscle Tension Dysphonia: A Systematic Review and Meta-Analysis (근긴장성 발성장애의 후두마사지 효과: 체계적 고찰 및 메타분석)

  • Kim, Jaeock
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.32 no.2
    • /
    • pp.64-74
    • /
    • 2021
  • Background and Objectives This study was to investigate the voice quality and articulation effects of laryngeal massage on muscle tension dysphonia (MTD). Materials and Method A systematic review of articles published between January 2000 and December 2020 in Cochrane, PubMed, ScienceDirect, SpingerLink, ERIC, and Naver Academic was conducted. From the total of 2094 articles identified, 10 peer-reviewed articles were included in a meta-analysis. Mean effect sizes of the variables related to voice quality (jitter, shimmer, harmonic to noise ratio or noise to harmonic ratio, high-F0, low-I, cepstral peak prominence) and articulation (F1, F2, F1 slope, F2 slope) were calculated by Hedges'g. Results Meta-analysis of the selected articles showed that laryngeal massage had medium to large effects on all variables of voice quality and articulation except F0-high and F1 slope in the MTD patients. Conclusion This study provided comprehensive clinical evidence that it is highly desirable to apply laryngeal massage to MTD patients.

Nonlinear analysis and tests of steel-fiber concrete beams in torsion

  • Karayannis, Chris G.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.4
    • /
    • pp.323-338
    • /
    • 2000
  • An analytical approach for the prediction of the behaviour of steel-fiber reinforced concrete beams subjected to torsion is described. The analysis method employs a special stress-strain model with a non-linear post cracking branch for the material behaviour in tension. Predictions of this model for the behaviour of steel-fiber concrete in direct tension are also presented and compared with results from tests conducted for this reason. Further in this work, the validation of the proposed torsional analysis by providing comparisons between experimental curves and analytical predictions, is attempted. For this purpose a series of 10 steel-fiber concrete beams with various cross-sections and steel-fiber volume fractions tested in pure torsion, are reported here. Furthermore, experimental information compiled from works around the world are also used in an attempt to establish the validity of the described approach based on test results of a broad range of studies. From these comparisons it is demonstrated that the proposed analysis describes well the behaviour of steel-fiber concrete in pure torsion even in the case of elements with non-rectangular cross-sections.

Effects of Tensile Reinforcement of Steel Fibers in SFRC (강섬유보강콘크리트내 강섬유의 인장보강효과)

  • 김규선;이차돈;박제선;심종성;최기봉
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.76-81
    • /
    • 1992
  • Short, randomly disturbed steel fibers in concrete increase tensile strength and ductility of concrete under direct tension. These improvements are results form crack arrest mechanisms of steel fibers in concrete. These mechanisms are theoretically considered in this study and verification on the adequancy of different spacing for predicting tensile strength of SFRC are assessed. Results indicate that better correlation exists between experimental result and the spacing concept which take into account the effect of boundaries as well as vibration on reorientation of steel fibers inside concrete. Also considered is the modeling of stress-crack opening relationships in post-peak region of SFRC under tension which bass its deviation on micromechanics of fiber pull-out. Satisfactoring results are observed between tests results and the prediction of the model.

  • PDF

Uniaxial tension behavior of high ductile fiber reinforced mortar designed based on micromechanics (마이크로 역학에 의하여 설계된 고인성 섬유복합 모르타르의 1축인장 거동)

  • Kim, Yun-Yon;Kim, Jeong-Su;Kim, Hee-Sin;Kim, Jin-Keun;Ha, Gee-Joo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.284-287
    • /
    • 2004
  • A high ductile fiber reinforced mortar has been developed by employing micromechanics-based design procedure. Micromechanical analysis was initially performed to properly select water-cement ratio, and then optimal mixture proportion was determined based on workability considerations, including desirable fiber dispersion without segregation. Subsequent direct tensile tests revealed that the fiber reinforced mortar exhibited high ductile uniaxial tension property, represented by $1.8\%$ strain capacity, which is around 100 times the strain capacity of normal concrete.

  • PDF

POSSIBILITY OF PARTIAL MELTING SOLDERING PROCESS WITH OFF EUTECTIC LEAD FREE SOLDER ALLOYS

  • Kang, Choon-Sik;Ha, Jun-Seok;Park, Jae-Yong;Jung, Jae-Pil
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.791-797
    • /
    • 2002
  • This paper introduces the partial melting process for solder application and characterization of its feasibility using Sn-Ag, and Sn-Cu solder alloys. ill order to show that the liquid phase in the semi-liquid state maintains the similar wettability as single-phase liquid, the wetting balance tests are conducted with varying temperatures and compositions. Also, as a new soldering technology, the microstructural and mechanical test were investigated. The results from this research indicate that the partial melting can yield satisfactory sider joints as long as the liquid phase acquires sufficient chemical activity. At a condition where the partial melting is effective, a direct correlation between the wettability and the surface tension is found to exist.

  • PDF