• Title/Summary/Keyword: direct tensile performance

Search Result 69, Processing Time 0.027 seconds

Stiffness analysis according to support design variables in the metal additive manufacturing process (금속 적층제조에서의 서포트 설계변수에 따른 강성 분석)

  • In Yong Moon;Yeonghwan Song
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.268-275
    • /
    • 2023
  • This paper delves into the crucial realm of support structures in metal additive manufacturing (AM) processes and their direct impact on the stiffness of printed components. With the continuous evolution of AM technologies, optimizing support structures has become imperative to enhance the overall quality and performance of manufactured metal parts. Therefore, in this study, tensile specimens were manufactured using various representative support design variables such as support type, spacing, and penetration depth, and the differences in displacement-load curve were analyzed though tensile test. Using additively manufactured support shaped tensile specimen, the paper presents a comprehensive examination of the effect of support parameters on their stiffness. The findings contribute to advancing the understanding how to design supports to suppress thermal deformation of metal parts during AM process, thereby paving the way for enhanced design freedom and functional performance in the ever-expanding field of AM.

Application of direct tension force transfer model with modified fixed-angle softened-truss model to finite element analysis of steel fiber-reinforced concrete members subjected to Shear

  • Lee, Deuck Hang;Hwang, Jin-Ha;Ju, Hyunjin;Kim, Kang Su
    • Computers and Concrete
    • /
    • v.13 no.1
    • /
    • pp.49-70
    • /
    • 2014
  • Steel fiber-reinforced concrete (SFRC) is known as one of the efficient modern composites that can greatly enhance the material performance of cracked concrete in tension. Such improved tensile resistance mechanism at crack interfaces in SFRC members can be heavily influenced by methodologies of treatments of crack direction. While most existing studies have focused on developing the numerical analysis model with the rotating-angle theory, there are only few studies on finite element analysis models with the fixed-angle model approach. According to many existing experimental studies, the direction of principal stress rotated after the formation of initial fixed-cracks, but it was also observed that new cracks with completely different angles relative to the initial crack direction very rarely occurred. Therefore, this study introduced the direct tension force transfer model (DTFTM), in which tensile resistance of the fibers at the crack interface can be easily estimated, to the nonlinear finite element analysis algorithm with the fixed-angle theory, and the proposed model was also verified by comparing the analysis results to the SFRC shear panel test results. The secant modulus method adopted in this study for iterative calculations in nonlinear finite element analysis showed highly stable and fast convergence capability when it was applied to the fixed-angle theory. The deviation angle between the principal stress direction and the fixed-crack direction significantly increased as the tensile stresses in the steel fibers at crack interfaces increased, which implies that the deviation angle is very important in the estimation of the shear behavior of SFRC members.

Polyvinyl-alcohol fiber-reinforced concrete with coarse aggregate in beam elements

  • Leonardo M. Massone;Jaime Reveco;Alejandro Arenas;Fabian Rojas
    • Advances in Computational Design
    • /
    • v.8 no.2
    • /
    • pp.113-131
    • /
    • 2023
  • The use of fibers has been commonly considered in engineered cementitious composites, but their behavior with coarse aggregate in concrete has not been studied significantly, which is needed to meet structural performance objectives for design, such as ductility. This research analyzes the behavior of fiber-reinforced concrete with coarse aggregate with 0.62%, 1.23%, and 2% PVA (Polyvinyl-alcohol) content, varying the maximum aggregate size. Tensile (direct and indirect) and compressive concrete tests were performed. The PVA fiber addition in coarse aggregate concrete increased the ductility in compression, especially for the fiber with a larger aspect ratio, with a minor impact on strength. In addition, the tensile tests showed that the PVA fiber increased the tensile strength of concrete with coarse aggregate and, more significantly, improved the ductility. A selected mixture was used to build short and slender reinforced concrete beams to assess the behavior of structural members. PVA fiber addition in short beams changed the failure mode from shear to flexure, increasing the deflection capacity. On the other hand, the slender beam tests revealed negligible impact with the use of PVA.

Evaluation of the Crack Width of the Ultra High Performance Concrete(K-UHPC) Structures (초고성능 콘크리트(K-UHPC) 구조물의 균열폭 평가)

  • Kwahk, Imjong;Lee, Jungwoo;Kim, Jeesang;Joh, Changbin
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.99-108
    • /
    • 2012
  • Ultra High Performance Concrete(UHPC) has compressive strength higher than 180 MPa. The use of steel fibers in the dense UHPC matrix increases tensile strength, ductility and bond strength between UHPC and rebars. However, to apply the advance material behavior of UHPC to the design of a structure, we need design formulas. The crack formula is one of them. This paper investigated experimentally the bond behavior of a rebar and K-UHPC, the UHPC developed by Korea Institute of Construction Technology, and, modified CEB-FIP crack formula based on the test. In addition, this paper tested the crack behavior of K-UHPC reinforced with rebars to verify the modified crack formula. The result showed that the modified formula is reasonable to predict the width of cracks in the reinforced K-UHPC structures.

Evaluation on the Mechanical Properties of Strain Hardening Cement Composite by Mixing Method for Application at Building Construction Site (건축시공 현장적용을 위한 비빔방법에 따른 SHCC의 역학적 성능 평가)

  • Jeon, Young-Seok;Kim, Gyu-Yong;Nam, Jeong-Soo;Kim, Young-Deok;Jeong, Jae-Hong;Lee, Seung-Hoon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.530-537
    • /
    • 2011
  • The purpose of this study is to examine material performance of fiber reinforced cement composite for mass production. It is necessary to manufacture SHCC(Strain Hardening Cement Composite) by batch plant for field application and mass production. For the study, a mock-up test of SHCC manufactured in the batch plant was conducted, and the performance was compared with SHCC manufactured in the laboratory. Assessment items were freshness and hardening properties. Specifically, direct tensile test machine was used for performance verification of SHCC. As a result, there was a tendency of less satisfactory fiber dispersion and performance of strain hardening compared with the performance of SHCC manufactured in the laboratory. To address this, dry mixing and mortar mixing time should be increased compared to laboratory mixing, and injection time of an agent such as a water reducing agent should be properly controlled according to mixing combination, or the capacity to secure dispersion and homogeneity of material.

Flexural Behavior of High Performance Fiber Reinforced Cementitious Composites (HPFRCC) Beam with a Reinforcing Bar (휨 철근이 배근된 HPFRCC 보 부재의 휨 거동)

  • Shin, Kyung-Joon;Kim, Jae-Hwa;Cho, Jae-Yeol;Lee, Seong-Cheol
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.169-176
    • /
    • 2011
  • In this study, the flexural test for reinforced high performance fiber reinforced cementitious composites (R/HPFRCC) members has been conducted in order to investigate the flexural behavior including the effect of an ordinary tensile reinforcing bar. Through the test, it was observed that the flexural strength increased due to the stable tensile stress transfer of HPFRCC, even up to the ultimate state. In addition, no localized crack appeared until the yielding of the reinforcement. From the layered section analysis of the tested members, it was found that the analysis with the tensile model obtained from the tension stiffening test showed better agreement with the flexural test results, whereas the analysis with direct tension test results overestimated the flexural capacity. Through the experimental and analytical studies, two flexural failure modes have been defined in this paper; concrete crushing at the top compression layer or tensile failure at the bottom tensile layer of the beam section. Based on these two flexural failure modes, a simple formula that estimates the ultimate flexural strength of the member has been proposed in this paper. The proposed equations can be useful in a design and an analysis of R/HPFRCC members.

Shear Strength of Ultra-High Performance Fiber-Reinforced Concrete(UHPFRC) I-shaped Beams without Stirrup (강섬유 보강 초고성능 콘크리트(UHPFRC) I형 보의 전단 강도)

  • Lee, Ji-Hyung;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.53-64
    • /
    • 2017
  • Ultra-high performance fiber-reinforced concrete (UHPFRC) is characterized by a post-cracking residual tensile strength with a large tensile strain as well as a high compressive strength. To determine a material tensile strength of UHPFRC, three-point loading test on notched prism and direct tensile test on doubly notched plate were compared and then the design tensile strength is decided. Shear tests on nine I-shaped beams with varied types of fiber volume ratio, shear span ratio and size effect were conducted to investigate shear behavior in web. From the test results, the stress redistribution ability represented as diagonal cracked zone was quantified by inclination of principal stress in web. The test results shows that the specimens were capable of resistance to shear loading without stirrup in a range of large deformation and the strength increase with post-cracking behavior is stable. However at the ultimate state all test specimens failed as a crack localization in the damaged zone and the shear strength of specimens is affected by shear span ratio and effective depth. Strength predictions show that the existing recommendations should be modified considering shear span ratio and effective depth as design parameters.

Bending Performance of Bacterial Cellulose Actuator under Water (수중에서 박테리아 셀룰로오스 작동기의 굽힘 성능)

  • Jeon, Jin-Han;Park, Min-Woo;Kim, Seong-Jun;Kim, Jae-Hwan;Oh, Il-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.203-204
    • /
    • 2008
  • Bacterial Cellulose Actuator with biocompatible and biodegradable properties was newly developed as an electro-active biopolymer under water. The performance of the BC actuator was improved through Li treatment. The mechanical and chemical properties of BC membranes were measured such as the tensile test, proton conductivity. The surface morphology of the bacterial cellulose was observed by using SEM. The electromechanical bending responses under both direct current and alternating current excitations were investigated. In voltage-current test,the power consumption under dynamic excitation increases with increasing voltage. Present results show that the bacterial cellulose actuator can be a promising smart material and may possibly have diverse applications under water.

  • PDF

An Evaluation of Moisture Sensitivity of Asphalt Concrete Pavement Due to Aging (노화에 따른 아스팔트 콘크리트 포장의 수분민감성 평가)

  • Kim, Kyungnam;Kim, Yooseok;Kim, Nakseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.4
    • /
    • pp.523-530
    • /
    • 2019
  • Pavement distress and traffic accidents are caused by pot-hole. In addition, direct and indirect damages of road users are increasing, such as loss of life due to personal injury and damage to vehicles. Generally, the asphalt concrete pavements are continuously aging from the production process to the terminal performance period. Aging causes stripping due to cracks and moisture penetration and weakening the pavement structure to induce pot-hole. In this study, adhesion performance and moisture sensitivity were evaluated according to aging degree in order to investigate the effect of aging on asphalt pavement. As a result of the study, the viscosity of the asphalt binder was increased with aging and the bond strength of the aged was increased 2~3 times than that of the unaged. The results of accelerated aging test showed an increases in indirect tensile strength and the increase in the TSR (Tensile Strength Ratio) by 4.2~8.9 %. As a result, it is noted that the anti-stripping and adhesion performances of the aged asphalt concrete are improved compared to the unaged one under the aging conditions of asphalt binder coated on aggregates.

Experimental & numerical investigation of mechanical properties in steel fiber-reinforced UHPC

  • Dadmand, Behrooz;Pourbaba, Masoud;Sadaghian, Hamed;Mirmiran, Amir
    • Computers and Concrete
    • /
    • v.26 no.5
    • /
    • pp.451-465
    • /
    • 2020
  • This paper presents experimental and numerical investigations on mechanical properties of ultra-high-performance fiber-reinforced concrete (UHPFRC) with four types of steel fibers; micro steel (MS), crimped (C), round crimped (RC) and hooked-end (H), in two fiber contents of 1% and 2% (by volume) and two lengths of 13 and 30 mm. Compression, direct tension, and four-point bending tests were carried out on four types of specimens (prism, cube, dog-bone and cylinder), to study tensile and flexural strength, fracture energy and modulus of elasticity. Results were compared with UHPC specimens without fibers, as well as with available equations for the modulus of elasticity. Specimens with MS fibers had the best performance for all mechanical properties. Among macro fibers, RC had better overall performance than H and C fibers. Increased fibers improved all mechanical properties of UHPFRC, except for modulus of elasticity, which saw a negligible effect (mostly less than 10%). Moreover, nonlinear finite element simulations successfully captured flexural response of UHPFRC prisms. Finally, nonlinear regression models provided reasonably well predictions of flexural load-deflection behavior of tested specimens (coefficient of correlation, R2 over 0.90).