• Title/Summary/Keyword: direct current

Search Result 2,741, Processing Time 0.034 seconds

MOS Transistor Differential Amplifier (MOS Transistor를 이용한 착동증폭기)

  • 이병선
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.4 no.4
    • /
    • pp.2-12
    • /
    • 1967
  • A pair of insulated-gate metal-oxide-semiconductor field-effect transistor has been used to measure the direct current produced from the ionization chamber in the range of to A. An analisis of direct-current differential amplifier giving the expressions of the common-mode rejection ratio and the rralization of the constant-current generator to give very large effective source resistance has been presented. Voltage gain is 6.6, drift at the room temperature is 1.5mv per day. The common-mode rejection ratio is obtained maximum 84db. These facts give the feasibility of small direct-current measurements by utilizing this type transistors.

  • PDF

Direct Torque Control System of a Reluctance Synchronous Motor Using a Neural Network

  • Kim Min-Huei
    • Journal of Power Electronics
    • /
    • v.5 no.1
    • /
    • pp.36-44
    • /
    • 2005
  • This paper presents an implementation of high performance control of a reluctance synchronous motor (RSM) using a neural network with a direct torque control. The equivalent circuit in a RSM, which considers iron losses, is theoretically analyzed. Also, the optimal current ratio between torque current and exiting current is analytically derived. In the case of a RSM, unlike an induction motor, torque dynamics can only be maintained by controlling the flux level because torque is directly proportional to the stator current. The neural network is used to efficiently drive the RSM. The TMS320C3l is employed as a control driver to implement complex control algorithms. The experimental results are presented to validate the applicability of the proposed method. The developed control system shows high efficiency and good dynamic response features for a 1.0 [kW] RSM having a 2.57 ratio of d/q.

Effects of anode and current collector materials on the power density of solid oxide electrolyte direct carbon fuel cell (고체산화물 전해질 직접탄소 연료전지의 전극 및 집전부 재질이 출력밀도에 미치는 영향)

  • Hwang, J.Y.;Yoon, J.E.;Kang, K.;Kim, J.H.;Lee, B.J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.392-394
    • /
    • 2009
  • Direct Carbon Fuel Cells (DCFCs) generates electricity directly converting the chemical energy in coal. In the present study, effects of anode and current collector materials on the power density of DCFC are investigated experimentally. The adopted DCFC system is combined type of solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) with the use of a liquid-molten salt anode and a solid oxide electrolyte, proposed by SRI. Power densities of 25 mm button cells with various combination of anode materials and current collector materials are measured.

  • PDF

A Direct Torque Control System for Reluctance Synchronous Motor Using Neural Network (신경회로망을 이용한 동기 릴럭턴스 전동기의 직접토크제어 시스템)

  • Kim, Min-Huei
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.1
    • /
    • pp.20-29
    • /
    • 2005
  • This paper presents an implementation of efficiency optimization of reluctance synchronous motor (RSM) using a neural network (NN) with a direct torque control (DTC). The equipment circuit considered with iron losses in RSM is analyzed theoretically, and the optimal current ratio between torque current and exiting current component are derived analytically. For the RSM driver, torque dynamic can be maintained with DTC using TMS320F2812 DSP Controller even with controlling the flux level because a torque is directly proportional to the stator current unlike induction motor. In order to drive RSM at maximum efficiency and good dynamics response, the Backpropagation Neural Network is adapted. The experimental results are presented to validate the applicability of the proposed method. The developed control system show high efficiency and good dynamic response features with 1.0 [kW] RSM having 2.57 inductance ratio of d/q.

An Optimal Efficiency Control of Reluctance Synchronous Motor using Direct Torque Control (직접 토크 제어를 이용한 리럭턴스 동기 전동기의 최대 효율제어)

  • Park Hong-il;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee;Kim Min-Huei
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.431-434
    • /
    • 2002
  • This paper presents an implementation of direct torque control(DTC) of Reluctance Synchronous Motor(RSM) with an efficiency optimization using the 32bit DSP TMS320C31. The influence of iron loss can not neglected as high speed and precision torque control of RSM, so the optimal current ration between torque current and exiting current analytically derived to drive RSM at maximum efficiency For RSM, torque dynamics can be maintained even with controlling the flux level because the generated torque is direct]y proportional to the stator current. The experimental results for an RSM are presented to validate the applicability of the proposed method. The developed control system is shown high efficiency features with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

  • PDF

Current-Sensorless Maximum Torque per Ampere Control for a Surface Mounted Permanent Magnet Synchronous Motor with Low-Resolution Position Sensor (저분해능 위치센서를 갖는 표면부착형 영구자석 동기전동기의 전류센서 없는 단위 전류 당 최대 토크 제어)

  • Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.204-210
    • /
    • 2009
  • This paper proposes a novel current-sensorless maximum torque per ampere control for a surface mounted permanent magnet synchronous motor with low-resolution position sensor. A direct axis current is estimated from the mathematical model of the permanent magnet synchronous motor and the phase angle between direct and quadrature axis voltage commands is controlled to adjust the estimated direct axis current to zero, thus a maximum torque per ampere control can be achieved. The proposed method is suitable for low cost applications with slow dynamic response characteristics.

High Speed Direct Current Control for the 8/10 Bearingless SRM (8/10 베어링리스 SRM의 고속 직접전류제어)

  • Guan, Zhongyu;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.690-697
    • /
    • 2012
  • Novel 8/10 bearingless switched reluctance motor, which can control rotor radial positions with magnetic force, is proposed. The motor has combined characteristics of switched reluctance motor and magnetic bearing. This paper proposes a air-gap control system method of suspending force control in a bearingless switched reluctance motor (BLSRM). The proposed radial force control scheme is independent to the torque winding current. A PI direct current control (DCC) controller and look-up table are used to maintain a constant rotor air-gap. From the analysis and the experimental results, it is shown that the proposed strategy is effective in realizing a naturally decoupled radial force control of BLSRM.

Reliability Modeling of Direct Current Power Feeding Systems for Green Data Center

  • Choi, Jung Yul
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.704-711
    • /
    • 2013
  • Data center is an information hub and resource for information-centric society. Since data center houses hundreds to ten thousands servers, networking and communication equipment, and supporting systems energy saving is one of the hottest issues for green data center. Among several solutions for green data center this paper introduces higher voltage direct current (DC) power feeding system. Contrary to legacy alternating current (AC) power feeding system equipped with Uninterruptible Power Supply (UPS), higher voltage DC power feeding system is reported to be a more energy efficient and reliable solution for green data center thanks to less AC/DC and DC/AC conversions. Main focus of this paper is on reliability issue for reliable and continuous operation of higher voltage DC power feeding system. We present different types of configuration of the power feeding systems according to the level of reliability. We analyze the reliability of the power feeding systems based on M/M/1/N+1/N+1 queueing model. Operation of the power feeding system in case of failure is also presented.

Pipe thinning model development for direct current potential drop data with machine learning approach

  • Ryu, Kyungha;Lee, Taehyun;Baek, Dong-cheon;Park, Jong-won
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.784-790
    • /
    • 2020
  • The accelerated corrosion by Flow Accelerated Corrosion (FAC) has caused unexpected rupture of piping, hindering the safety of nuclear power plants (NPPs) and sometimes causing personal injury. For the safety, it may be necessary to select some pipes in terms of condition monitoring and to measure the change in thickness of pipes in real time. Direct current potential drop (DCPD) method has advantages in on-line monitoring of pipe wall thinning. However, it has a disadvantage in that it is difficult to quantify thinning due to various thinning shapes and thus there is a limitation in application. The machine learning approach has advantages in that it can be easily applied because the machine can learn the signals of various thinning shapes and can identify the thinning using these. In this paper, finite element analysis (FEA) was performed by applying direct current to a carbon steel pipe and measuring the potential drop. The fundamental machine learning was carried out and the piping thinning model was developed. In this process, the features of DCPD to thinning were proposed.

PEO Film Formation Behavior of Al1050 Alloy Under Direct Current in an Alkaline Electrolyte

  • Moon, Sungmo;Kim, Yeajin
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.1
    • /
    • pp.17-23
    • /
    • 2017
  • This work demonstrates arc generation and anodic film formation behaviors on Al1050 alloy during PEO (plasma electrolytic oxidation) treatment under a constant direct current in an alkaline electrolyte containing silicate, carbonate and borate ions. Only one big arc more than 2 mm diameter was generated first at the edges and it was moving on the fresh surface or staying occasionally at the edges, resulting in the local burning due to generation of an extremely big orange colored arc at the edges. Central region of the flat surface was not fully covered with PEO films even after sufficiently long treatment time because of the local burning problem. The anodic oxides formed on the flat surface by arcing once were found to consist of a number of small oxide nodules with spherical shape of $3{\sim}6{\mu}m$ size and irregular shapes of about $5{\sim}10{\mu}m$ width and $10{\sim}20{\mu}m$ length. The anodic oxide nodules showed uniform thickness of about $3{\mu}m$ and rounded edges. These experimental results suggest that one big arc observed on the specimen surface under the application of a constant direct current is composed of a number of small micro-arcs less than $20{\mu}m$ size.