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a b s t r a c t

The accelerated corrosion by Flow Accelerated Corrosion (FAC) has caused unexpected rupture of piping,
hindering the safety of nuclear power plants (NPPs) and sometimes causing personal injury. For the
safety, it may be necessary to select some pipes in terms of condition monitoring and to measure the
change in thickness of pipes in real time. Direct current potential drop (DCPD) method has advantages in
on-line monitoring of pipe wall thinning. However, it has a disadvantage in that it is difficult to quantify
thinning due to various thinning shapes and thus there is a limitation in application. The machine
learning approach has advantages in that it can be easily applied because the machine can learn the
signals of various thinning shapes and can identify the thinning using these. In this paper, finite element
analysis (FEA) was performed by applying direct current to a carbon steel pipe and measuring the po-
tential drop. The fundamental machine learning was carried out and the piping thinning model was
developed. In this process, the features of DCPD to thinning were proposed.
© 2019 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Flow Accelerated Corrosion (FAC) is a phenomenon that results
in metal loss from piping, vessels, and equipment made of carbon
steel. FAC occurs under the certain conditions of flow, chemistry,
geometry, and materials. Unfortunately, these conditions are
common conditions in nuclear power plants (NPPs) or fossil-fueled
power plants. FAC can cause ruptures of pipe; it has become amajor
issue particularly for NPPs [1]. Although major failures are rare, the
consequences can be severe. The “break before leak” caused four
people to die in the Surry NPP in United States in 1986, and four
people were died and six were injured in the Mihama NPP in Japan
in 2004 [2]. In addition to concerns about personnel safety, FAC
failures can pose challenges to plant safety. Also, FAC failure can
force a plant to shutdown and purchase replacement power at a
price approaching a million dollars per day depending upon the
MWe size of a plant [1]. Programs to diagnose and manage the pipe
thickness to manage the FAC has been developed [3], and the
development of water chemistry of the NPPs to reduce the occur-
rence of FAC has been progressed [4], and the research such as the
by Elsevier Korea LLC. This is an
development of carbon steel materials resistant to the FAC has been
carried out [5].

Ultrasonic Testing (UT) is mainly used for measurement of pipe
thinning, and Eddy Current Testing (ECT) is sometimes used.
Research on thickness measurement using vibration sensor [6] and
technique for screening degree of thinning using Direct Current
Potential Drop (DCPD) [7,8] have been studied. In particular, DCPD
is excellent for high temperature application, thus it is advanta-
geous for online application [9], and it is suitable for online thick-
ness measurement because it can detect precise thickness change
with good signal to noise ratio [10]. However, it is technically
difficult to quantify the rate of thinning from various DCPD signals
caused by various thinning shape [11].

It is expected that the machine learning approach can be a so-
lution. Various shapes of thinning or cracks produce different DCPD
signals. It is intuitively difficult to derive the shape of a thinning or
crack based on a signal of the potential drop type. Also, since the
development of the model is almost impossible without prior in-
formation on the position and shape of the thinning or defect, a
machine learning approach can be useful. It would be useful if we
could extract features of the position and shape of thinning in DCPD
signal. In this paper, the features of DCPD signals for various thin-
ning shape is suggested as shape factor and relative potential drop,
and the fundamental machine learning approach is applied to
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Table 1
Modeled thinning shape.

Case qmax/2p (degree) amax/t Material

R 0 0 Carbon steel
A1 1/8 (45) 1/6
A2 1/3
A3 1/2
A4 2/3
B1 1/4 (90) 1/6
B2 1/3
B3 1/2
B4 2/3
C1 3/8 (135) 1/6
C2 1/3
C3 1/2
C4 2/3
T1 1/2 (180) 1/6 Stainless steel
T2 1/3
T3 1/2
T4 2/3
D1 5/8 (225) 1/6 Carbon steel
D2 1/3
D3 1/2
D4 2/3
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derive piping thinning model.

2. Analysis model

Since the thinned shape by FAC is caused by the reduction of
diffusion boundary layers by flow change, the thinned shape is not
angled, and in most cases, it has an elliptical shape. Therefore, the
thinning shape can be modeled as shown in Fig. 1. In this case, the
shape of the thinning can be described by the depth ratio (a/t), the
length ratio (b/L), and the angle ratio (q/2p). The depth ratio is a
normalized value of the thickness of the initial thickness of the pipe
(t) to the thickness of the reduced thickness due to the thinning (a),
the length ratio is a normalized value of the thinning portion (b) in
themeasuring range (L), and the angle ratio is a normalized value of
the thinning in the circumferential direction (q). The piping
without the thinning was modeled as a reference case, and the four
maximum depth ratios were modeled for each of the four
maximum angular ratios. Table 1 summarizes these.

For the model development, four maximum angle ratios (A to D)
and maximum depth ratios (1e4) were modeled (A1 to D4). The
potential drop was analyzed at 64 points of circumferential direc-
tion at 0.5 cm from the end of the thinning. Since each potential
difference value is assumed to have information of the depth and
width of the thinning at the position, a total of 1024 DCPD values
were used for model development. The DCPD data for the angle
ratio of 1/2 was not used for model development; theywere used to
confirm the model after the model development was completed
(T1 to T4).

A total current of 10 A was applied to the piping surface at a
position 10 cm away from the measurement point. The applying
position and amount of DC do not affect the potential drop. How-
ever, if the current is applied too close to the measurement posi-
tion, the current may not distribute uniformly in the pipe, which
may cause an error in themodel. It can be generally considered that
current is uniformly distributed when a current is applied at a
distance of about 1.5 times the pipe diameter. The amount of cur-
rent is normalized by the potential drop, so it does not affect the
model. In actual cases, the amount of current to be applied should
be determined considering the specifications of the measuring
system and the size of the piping. The repeatability and repro-
ducibility error of switching DCPD (S-DCPD) in 2.5-inch pipe is
about 0.06% GR&R (analysis of variance (ANOVA) gauge repeat-
ability & reproducibility (GR&R)) when the current is 5 A, and
about 0.02% error of GR&R when the current is 10 A [10]. In this
paper, the pipe used in the analysis is a 2.5-inch carbon steel pipe.
Since the shape of the thinning is normalized, there is no model
variation with respect to the size of the pipe.

The resistivity of the material does not affect the model because
the DCPD is normalized by the potential difference. To confirm this,
Fig. 1. Modeled thinning
the verification data (T1~T4) was modeled using stainless steel
material. In actual cases, there may be a change in the resistivity
due to the temperature difference for each measurement time. This
effect can be offset by correcting the resistivity change using
reference coupon [9].

3. Analysis results and derived piping thinning model

Fig. 2 and Fig. 3 show the potential drop generated by applying
DC current to the thinning shape of Table 1. In these figures, the
potential drop is shown in terms of the ratio of the depth and the
length at each point. It is not easy to quantify the shape of the
thinning based on the potential drop data. This is because the po-
tential drop data is affected by both the depth of the thinning and
the length of the thinning.

It was assumed that the DCPD has information on the depth and
width of the thinning in the current flow direction at themeasuring
point. In this assumption, it is reasonable that the DCPD value of the
measurement position where there is no thinning in the current
flow direction is zero. However, in Figs. 2 and 3, it can be seen that
the DCPD at the position without thinning is not zero. The increase
in overall resistance caused by the thinning increases the potential
even at locations where no thinning occurs. Fig. 4 shows the effect
of the potential drop due to this overall resistance increase. In order
to apply the assumption that the DCPD has information on the
depth and width of the thinning in the current flow direction at the
shape, 1/4 model.



Fig. 2. Potential drops to the each depth ratio of thinning.

Fig. 3. Potential drops to the each length ratio of thinning.
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measuring point, it is needed to adjust the potential drop to zero at
the 90� position without thinning. The concept used for this pur-
pose is the relative potential drop. Generally, by setting the po-
tential drop of the end portion of the defect to zero and adding the
potential drop of the symmetric positionwith respect to the defect,
the entire resistance effect can be eliminated effectively. In this
paper, the relative potential drop is simply defined as Equation (1).

dV
V0

≡
dV
V0

����
rel

¼ dV
V0

� dV
V0

����
end of thinned point

(1)
where dV is the difference between the obtained potential and the
potential without thinning (case R), V0.

Even if the concept of relative potential drop is introduced, the
relation between DCPD and thinning shape is not shownwhich the
relation is defined as the feature of DCPD. Since the potential drop is
related both the depth and the width of the thinning, it is necessary
to define the feature in three dimensions, but it is not easy to
intuitively define the feature. In future work, the deep learning
technology can be used for cases where feature extraction is not
clear, but in this paper, dimension reduction is performed to extract
features. For this purpose, it is assumed that the obtained DCPD



Fig. 4. DCPD vs. depth ratio of thinning.

Fig. 5. DCPD vs. depth and width ratio of thinning: Case T1.
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only indicates the resistance change due to the thinning in the
current direction, and the feature of the DCPD can be extracted
through the resistance change. This assumption, of course, is
different from reality. The potential drop is affected not only by a
change in resistance but also by a current that changes due to the
resistance. However, when relative potential drop is used, these
assumptions may well describe the obtained values. The resistance
change due to the thinning can be expressed as shown in Equation
(2), taking into account the simple assumption of thinned shape as
triangle in two dimensions. The equation is derived from the
definition of resistance that is proportional to length and resistivity,
and inversely proportional to area. The value is defined as a shape
factor, Y, and used as a thinning feature for DCPD.

Y¼b
L
,

�
t
a
, ln

�
1

1� a=t

�
�1

�
(2)

In this paper, the concept of shape factor and relative DCPD is
defined and presented as features of correlation between DCPD and
thinning. It is briefly explained why we tried to find these features
in this paper. It is difficult to derive the correlation between DCPD
and thinning shape. For one case in Fig. 5 (T1 case), the empirical
equation can be derived from the 3D fitting, but the empirical
equation derived in this way is not applicable to different cases,
such as A1 to D4, because the slop and curvature are different. In
this paper, we have tried to derive a thinning model which can be
commonly applied to various thinning shapes by FAC (elliptical
thickness reduction). For this purpose, the machine learning
approach was used in DCPD signal analysis. It was important to
select a clear feature of DCPD for the thinning shape as the first step
in learning the machine. This paper is about this first phase of the
study and can contribute to future research in this area by sug-
gesting key features between DCPD and thinning shapes. In order
to use the fundamental machine learning approach, the relative



Table 2
wt factor in each case.

qmax/2p Weight, W

1/8 40.9723
1/4 10.5804
3/8 5.50739
5/8 3.12721
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DCPD and shape factor are suggested. If there are more data, and if
the machine is learned not by the expert but by the machine itself;
thus the machine finds the features of DCPD by itself, then what
results can be obtained is themain topic of futurework. The relative
DCPD according to the shape factor for the T1 case is shown in
Fig. 6. Compared to Fig. 5, the dimension was reduced to 2 di-
mensions and the potential drop value was simplified to almost
linear shape.

The main features are proposed as shape function and relative
DCPD, and these values are used in the learning. The relative DCPD
with respect to the shape factor is assumed to be linear, and this
hypothesis is expressed as simple form by Equation (3). The cost
function in this hypothesis is given in equation (4) and weight
factor to minimize the cost function was calculated.

Y¼ HðxÞ¼ W,x (3)

where x is the relative DCPD, andW is weight factor for the DCPD to
shape factor, Y.

costðWÞ ¼ 1
m

Xm
i¼1

�
WxðiÞ � YðiÞ

�2

(4)

where m is number of DCPD data.
When weight factors are obtained that minimize the cost

function, a correlation model between relative DCPD and thinning
shape factor can be obtained.

From case A1 to case D4, 64 measurement data for each case, a
total of 1024 DCPD data were used for the learning data. The ma-
chine learning process was conducted using Google's tensor flow,
open source software. The learning was performed 100,000 times
for each thinning shape to find the minimum weight values. The
weight values for each thinning shape derived from this process are
summarized in Table 2.

The weight factors summarized in Table 2 are shown in Fig. 7. In
this process, reciprocals were taken to the thinning angle ratio and
square roots were taken to the weight factors. The reason for taking
Fig. 6. Relative DCPD vs. S
the inverse and square root is to find the relation of the weight
value in each thinning shape.

In Fig. 7, the inverse of the angle ratio of thinning and the square
root of the weight factor have a linear relationship. From this, the
equation for the weight factor for various thinning shapes can be
obtained as in equation (6). This equation was derived from the
linear fit of Fig. 7, where the R2 value of the linear fittingwas 0.9967.
Finally, the piping thinning model of DCPD is presented in Equa-
tions (5) and (6).

Y¼W,

�
dV
V0

�
(5)

W ¼
�

0:7351
qmax=2p

þ 0:4559
�2

(6)
4. Confirmation of developed piping thinning model

The pipe thinning model was developed based on 16 thinning
shapes (case A1 to D4) and presented in equations (5) and (6).
Additional finite element analysis was performed to confirm that
themodel can be applied to various thinning shapes as well as to 16
thinning shapes. The additional FEA was performed for cases T1 to
T4which are summarized in Table 1. The analysis was performed on
316 stainless steel rather than carbon steel, and it was confirmed
whether the developed model could be applied regardless of the
hape factor: Case T1.



Fig. 7. wt factors for each thinning shape.

K. Ryu et al. / Nuclear Engineering and Technology 52 (2020) 784e790 789
type of material. The electrical resistivity used in the analysis was
0.0000174 U-cm for carbon steel and 0.0000740 U-cm for 316
stainless steel.

A total of 256 DCPD values were further calculated with 64
DCPD in the circumferential direction for 4 thinning shape (case T1
to T4). This obtained DCPD values were calculated using the same
assumptions and learning methods as those used to derive weight
factor in Table 2. The calculated weight factor is shown in Table 3.
Table 3 also shows the weight factor obtained from equation (6).
The difference between the two values is 0.06413, which shows an
error of about 1.71%. This shows that although the model is
developed from four thinning shapes, but the model can be applied
to various thinning shapes commonly without further machine
learning, not limited to thinning shapes. The two weight factors in
Table 3 are additionally shown in Fig. 6.
5. Discussion

In this paper, pipe thinning model of DCPD was developed by
machine learning approach. It was confirmed that the developed
model can be applied commonly to various thinning shapes.

The model developed through this paper has several limitations
as follows.

1) A reference potential (V0) where no thinning has occurred is
required.

2) Since the value derived by the model is a shape factor (Y), it is
needed that prior information or accurate prediction of the
thinning shape to calculate the thickness reduction.
Table 3
wt factor in each case.

qmax/2p Weight factor calculated by the developed thinn

1/2 3.69024
3) This is similar to the second limitation, it is necessary that prior
information or precise prediction on how far the thinning is
distributed in the circumferential direction.

In fact, these limitations are inherent limitations of DCPD
technique. When even diagnosing cracks by DCPD, you similarly
need to know the reference potential and prior information of the
shape and the location of the crack. The first limitation of DCPD is
very fundamental and cannot escape the limitation in any way. This
is because DCPD does not use the potential but uses the potential
drop. In diagnosing FAC, the second limitations of DCPD can be
solved using reasonable assumptions. It is assumed that the shape
of the thickness reduction due to FAC is a semi-elliptical shape. The
pipe thinning by FAC is caused by the reduction of the thickness of
the diffusion boundary layer caused by the change of the flow, the
thinning shape is not angled, and in most cases, it has an elliptical
shape. When analyzing the shapes of various thickness reductions
that occurred at the commercial NPPs, it does not deviated from
semi-elliptical shape [9]. Therefore, if only the location information
at which thinning has occurred is accurate, the degree of thinning
can be calculated from the shape factor. That is, if the third limi-
tation is solved, it can be great help in diagnosing defects using
DCPD technique.

However, the third limitation does not have a suitable solution.
Of course, we can make assumption that thinning occurs in the
extrados part of an elbow. Even in the case of a tee, it will be
possible to have preliminary information on how thinning occurs
from any place along the fluid flow. However, it is difficult to know
in advance the location information that is sufficient to compensate
for the increase in overall resistance caused by thinning. This seems
ing model Weight factor calculated by ML approach

3.75437



K. Ryu et al. / Nuclear Engineering and Technology 52 (2020) 784e790790
almost impossible with traditional signal processing methods, as it
solves the inverse problem. That is the reason for using themachine
learning approach in this paper. I believe that the location infor-
mation of thinning can be provided from the overlapped potential
drop signal through data driven signal processing that has been
dramatically improved recently. Of course, so many potential drop
signals are needed for the purpose. In this paper, as a first step for
the purpose, supervised learning method was used to make the
machine learn the potential drop signals and the pipe thinning
model was derived. In order to make use of the supervised learning
method, it is required to understand the features between the
potential drop and the thinning. The two features suggested by this
paper, the relative potential drop and the shape factor, can be used
and contributed in various ways in the field of data driven signal
processing of DCPD.

Future work seems to be required the development of a model
that describes the overall resistance increase and verification or
improvement the model in various pipe shapes such as elbow, tee,
etc. It may be needed to build big data of DCPD and develop model
using artificial intelligence (AI) algorithm. If signal processing al-
gorithms that do not require prior knowledge of thinning shapes
and positions are developed through AI, it will be greatly increased
the use of DCPD technique.

6. Summary and conclusion

Much research is being conducted to monitor the thinning of
pipes and the resulting breakage by FAC online. DCPD technology is
suitable for online monitoring because of its high applicability and
high signal-to-noise ratio in high temperature and radiation envi-
ronments. However, it is difficult to quantify the degree of thinning
in the DCPD signal. The machine learning approach is thought to
have an advantage in quantifying thinning with DCPD signals. As a
first step in this paper, we conducted a study to develop the fea-
tures of DCPD to thinning and developed thinning model to
quantify thinning through a basic machine learning approach.

To this end, various thinning shapes were modeled and FEAwas
performed. Thinning by FAC is not angled and has a rounded shape
because it is affected by the reduction of the diffusion layer by the
flow. Thus, various thinning shapes can be represented by the
length, width and angle of thinning. In this paper, wemodeled four
maximum thinning angles and four maximum thinning depths at
each maximum thinning angle. DCPD was acquired by setting 64
measuring points in the circumferential direction. Each measuring
point can then be thought of as simulating different lengths and
widths of thinning. Thus, DCPD with a total of 1024 measuring
points and each thinning shapes were used for model
development.

Assuming DCPD at each measuring point as a function of the
depth and length of thinning, the empirical equation can be derived
by 3D fitting, however, the empirical equation derived in this way
in not applicable to different cases. In this paper, we tried to
develop a thinning model that can be applied to various thinning
shapes in common. It is important to develop key features between
DCPD and thinning shapes. Relative potential drop and shape factor
are presented as features of the DCPD to thinning shape. The
concept of relative potential drop could be used for measurements
in piping in circumferential direction. The shape factor is the
theoretical value of the change in resistance, which can be mean-
ingful if used with a relative potential drop that can offset the
change in current. These features allowed us to develop a thinning
model with a basic machine learning approach. It is validated that
the developed thinning model can be applied regardless of the
thinning shape and material properties.

Many studies still take a knowledge-based approach to quanti-
fying DCPD. However, DCPD signals are still difficult to quantify
because current and resistance change simultaneously. Two of the
features developed in this paper could be used to develop
knowledge-based models. However, in the long term, DCPD signal
interpretation makes sense to follow a data-based approach. I hope
this paper can be the first step in such research.

Declaration of competing interest

This research was conducted in the absence of any commercial
or financial relationships that could be construed as a potential
conflict of interest.

Acknowledgements

This work was financially supported by the Project of Material
and Component Fusion Alliance (No. 1415161584), the Project of
Construction of Virtual Engineering Platform for Manufacturing for
Future Transportation Equipment Parts (No. 1415161583), and the
Technology Innovation Program (MO9380, development of a high-
speed multipass DTP system) funded by the Korea Government
Ministry of Trade, Industry and Energy.

References

[1] Electric Power Research Institute, Flow-Accelerated Corrosion in Power
Plants: Technical Report (TR-106611), EPRI, 1996.

[2] Organization for Economic Cooperation and Development, Flow Accelerated
Corrosion (FAC) of Carbon Steel & Low Alloy Steel Piping in Commercial
Nuclear Power Plants: Topical Report (NEA/CSNI/R(2014)6), OECD-NEA, 2015.

[3] S.H. Lee, Y.S. Lee, S.K. Park, J.G. Lee, Corros. Sci. Technol. 14 (2015) 1.
[4] H.J. Gwon, H.K. Ahn, C.H. Song, B.G. Park, J. Korea Acad. Ind. Coop. Soc. 12

(2011) 6.
[5] KAERI, Development of Carbon Steel with Superior Resistance to Wall Thinning

and Fracture for Nuclear Piping System: Final Report (RR-3181), Korea Atomic
Energy Research Institute, 2009.

[6] S.W. Han, J.S. Seo, J.H. Park, J. Korean Inst. Gas 21 (2017) 1.
[7] K.H. Ryu, I.S. Hwang, N.Y. Lee, Y.J. Oh, J.H. Kim, J.H. Park, C.H. Sohn, Nucl. Eng.

Des. 238 (2008).
[8] K.H. Ryu, I.S. Hwang, J.H. Kim, Nucl. Eng. Des. (2013) 265.
[9] K.H. Ryu, T.H. Lee, J.H. Kim, I.S. Hwang, N.Y. Lee, J.H. Kim, J.H. Park, C.H. Sohn,

Nucl. Eng. Des. (2010) 240.
[10] K.H. Ryu, I.S. Hwang, J.H. Kim, J. Korean Soc. Nondestruct. Test. 28 (2008) 2.
[11] K.H. Ryu, Development of Piping Wall Thinning Screening Technique Based on

Equipotential Switching Direct Current Potential Drop Method, Ph.D. Thesis,
Seoul National University, 2010.

http://refhub.elsevier.com/S1738-5733(19)30113-5/sref1
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref1
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref2
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref2
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref2
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref2
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref3
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref4
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref4
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref5
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref5
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref5
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref6
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref7
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref7
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref8
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref9
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref9
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref10
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref11
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref11
http://refhub.elsevier.com/S1738-5733(19)30113-5/sref11

