• Title/Summary/Keyword: diode laser

Search Result 1,017, Processing Time 0.031 seconds

Carbon dioxide LASER-aided management of oral mucosal diseases (이산화탄소(CO2) 레이저로 치료하면 좋은 구강점막질환)

  • Byun, Jin-Seok
    • The Journal of the Korean dental association
    • /
    • v.56 no.7
    • /
    • pp.391-397
    • /
    • 2018
  • Mess removal, electrocoagulation, cryosurgery are conventional methods in the treatment of various oral mucosal diseases. However, there are several problems or complication during or after surgery using conventional tools. Recently, LASER gradually become useful tool in the surgery of oral mucosal diseases. Of the LASER, carbon dioxide-mediated LASER is widely used one. Carbon dioxide LASER has many advantages such as good bleeding control, decreased damage to adjacent tissue, decreased pain and swelling, reduced scar formation, even bacteriocidal effects. In this reports, the author describe pros and cons of LASER, especially focused on carbon dioxide, and shed light on the field of LASER application in treatment of various oral mucosal diseases.

  • PDF

APPLICATION OF A MULTI-WAVELENGTH NIR DIODE LASER ARRAY FOR NON-DESTRUCTIVE FOOD ANALYSIS

  • Tauscher, Bernhard;Butz, Peter;Lindauer, Ralf
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3123-3123
    • /
    • 2001
  • Near infrared (NIR) spectroscopy has become a widely used method in food and beverage analysis because of its speed, accuracy and the simplicity of sample preparation. One of the basic requirements of NIR instruments is a wide dynamic range if weak, or small, absorption changes or concentrations are to be measured. Thus the instrument must be sufficiently luminous, and efficient, to enable measurements to be made in a reasonably short time, as for some applications (e.g. sorting) short response times are essential. Diode lasers function the same way as lasers but linewidths are not as narrow as typical lasers. In this work an array of seven laser diodes (in the range of 750-1100 nm) with energy outputs of around hundred milliwatts each were combined with a fast diode array spectrometer (400-1100 nm, 1024 pixels, integration time from 3 ms) as detector. Measurements in transmission mode were performed in solutions of sugars in aqueous solutions and in deuteriumoxide. The feasibility of non-destructive measurements in transmission mode was investigated for different fruits and vegetables.

  • PDF

Design of Electrical equivalent circuit of Planar Buried Heterostructure Laser Diode (평면 매립형 레이저 다이오드의 전기적 등가회로 모델)

  • Kim Jeong-Ho;Park Dong-Kook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.4
    • /
    • pp.718-723
    • /
    • 2006
  • Optical module plays an important role in the construction of high speed communication network. Laser diode is a component of optical module, and its characteristics are dependent of temperature, so many researches are reported. In this paper, we proposed the electrical equivalent circuit of PBH-LD based on the rate equations. And, the two leakage paths exit outside the active region. One path is converted pn-diode and the other path is converted two transistors using npn-Tr and pnp-Tr. In order to reduce the leakage currents, we observed the dependence of carrier concentrations of current blocking layers using PSPICE simulator.

A Study on Fabrication of Optical Waveguide using Laser Direct Writing Method (레이저 직접묘화기법에 의한 광도파로 제작에 관한 연구)

  • 신보성;김정민;김재구;조성학;장원석;양성빈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.391-394
    • /
    • 2003
  • Laser direct writing process is developed 3rd harmonic Diode Pumped Solid State Laser with the near visible wavelength of 355 m sensitive polymer is irradiated by UV laser and developed using polymer solvent to obtain quasi-3D. It is important to reduce line width for image mode waveguides, so some investigations will be carried out in various conditions of process parameters such as laser power, writing speed, laser focus and optical properties of polymer. This process could be to fabricate a single mode waveguide without expensive mask projection method. Experimentally, the patterns of trapezoidal shape were manufactured into dimension of 8.4 mm width and 7.5 mm height. Propagation loss of straight waveguide measured 3 dB/cm at 1,550 nm.

  • PDF

The Low Temperature Laser Treatment of Sealing Glass Substrate for ECL (ECL용 유리기판의 레이저 저온 실링처리)

  • Choi, Hye-Su;Park, Cha-Soo;Gwak, Dong-Joo;Sung, Youl-Moon
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1134-1135
    • /
    • 2015
  • In this paper, we reported fabrication of sealing the glass substrate using laser treatment at low temperature for electrochemical luminescence (ECL) cell. The laser treatment at temperature is using laser diode. The glass substrate sealing by laser treatment tested at 1-5 W, 1-5 mm/s for builted and tested. The sealing laser treatment method will allow associate coordination between the two glass substrate was enclosed. The effect of laser treatment to sealing the glass substrate was found to have cracks and air gap at best thickness of about $845-780{\mu}m$ for condition 5 W, 1-5 mm/s. The surface of sealing was roughness which was not influent to electrodes So, it is more effective viscosity between two glasses substrate.

  • PDF

A weldability of thick materials with 10kW fiber laser and its application (10kW 화이버레이저를 이용한 후판소재 용접 및 응용)

  • Lee, Mok-Yeong;Ryu, Chung-Seon;Jang, Ung-Seong;Park, Seo-Jeong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.177-180
    • /
    • 2007
  • The laser welding process was effective way to join the metals, because of the high productivity, the low distortion and the good weld quality. The fiber laser used the double-clad fiber architecture, the single element diode laser and the fully-spliced side pumping. It has the advantages in the views of the energy conversion efficiency, the beam quality, the robustness and the mobility. Recently, the thick material was welded with the high power laser in ship building or construction industry owing to the super bright fiber laser. In this study, we introduced the characteristics of high power fiber laser and its welding performance of thick gauge materials.

  • PDF

Characteristics of Laser Direct Patterned Indium Tin Oxide Layer by Overlapping Rates of Laser Beam

  • Li, Zhao-Hui;Ahn, Min-Hyung;Choi, Kyung-Min;Im, Seung-Hyeok;Jung, Kyung-Seo;Cho, Eou-Sik;Kwon, Sang-Jik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1496-1499
    • /
    • 2009
  • A diode-pumped Nd:$YVO_4$ laser was used to obtain indium tin oxide (ITO) patterns on glass substrate with various overlapping rates. The results showed that the overlapping rate of laser beam influences on the edge structure of ITO pattern and the surface roughness of ablated groove bottom. At a laser repetition rate of 40 kHz, the optimized condition of overlapping rate was 75 %.

  • PDF

Effect of Nd:YVO4 Laser Beam Direction on Direct Patterning of Indium Tin Oxide Film

  • Ryu, Hyungseok;Lee, Dong Hyun;Kwon, Sang Jik;Cho, Eou Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.72-76
    • /
    • 2019
  • A Q-switched diode-pumped neodymium-doped yttrium vanadate (YVO4, λ =1064nm) laser was used for the direct patterning of indium tin oxide (ITO) films on glass substrate. During the laser direct patterning, the laser beam was incident on the two different directions of glass substrate and the laser ablated patterns were compared and analyzed. At a low scanning speed of laser beam, the larger laser etched lines were obtained by laser beam incident in reverse side of glass substrate. On the contrary, at a higher scanning speed, the larger etched pattern sizes were found in case of the beam incidence from front side of glass substrate. Furthermore, it was impossible to find no ablated patterns in some laser beam conditions for the laser beam from reverse side at a much higher scanning speed and repetition rate of laser beam. The laser beam is expected to be transferred and scattered through the glass substrate and the laser beam energy is thought to be also dispersed and much more influenced by the overlapping of each laser beam spot.

Laser Micro-Joining and Soldering (레이저 마이크로 접합 및 솔더링)

  • Hwang, Seung Jun;Kang, Hye Jun;Kim, Jeng O;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.7-13
    • /
    • 2019
  • In this paper, the principles, types and characteristics of the laser and laser soldering are introduced. Laser soldering methods for electronics, metals, semiconductors are also presented. Laser soldering is a non-contact process that transfers energy to solder joint by a precisely controlled beam. Demands for laser soldering are increasing due to bonding for complex circuits and local heating in micro joint. Laser absorption ratio depends on materials, and each material has different absorption or reflectivity of the laser beam, which requires fine adjustment of the laser beam. Laser types and operating conditions are also important factors for laser soldering performance. In this paper, the performance of Nd:YAG laser soldering is compared to the hot blast reflow. Meanwhile, a diode laser gives different wavelength and smaller parts with high performance, but it has various reliability issues such as heat loss, high power, and cooling technology. These issues need to be improved in the future, and further studies for laser micro-joining and soldering are required.

In Vitro Effect of 808-nm Diode Laser on Proliferation and Glycosaminoglycan Synthesis of Rabbit Articular Chondrocytes (토끼 관절 연골세포의 증식과 글리코스아미노글리칸 합성에 대한 808-nm 다이오드 레이저의 효능 평가)

  • Minar, Maruf;Hwang, Ya-won;Choi, Seok-hwa;Kim, Gonhyung
    • Journal of Veterinary Clinics
    • /
    • v.32 no.4
    • /
    • pp.295-300
    • /
    • 2015
  • The aim of the study was to assess the in vitro effect of 808-nm InGaAs diode laser on rabbit articular chondrocyte proliferation and sulphated glycosaminoglycan (sGAG) synthesis in alginate bead. Previous studies revealed either positive or negative stimulatory effects of laser on different types of cells. A 808-nm InGaAs diode laser at 1.0W power output was used to irradiate the rabbit chondrocytes in alginate beads with energy densities of $31J/cm^2$ (G 1) and $62J/cm^2$ (G 2) corresponding to the experimental groups for 10 seconds and 20 seconds, respectively at 24, 48, 72 and 96 hours after seeding. Control group was left untreated. MTT assay was performed at 1 week and 2 weeks after the $1^{st}$ laser irradiation in alginate beads. sGAG synthesis in alginate beads at 1 week and 2 weeks were determined by DMMB assay. Histological evaluation for cellular distribution and sGAG deposition around the cells were performed by alcian blue stain. MTT assay revealed no positive stimulatory effect in cell proliferation in alginate bead. DMMB assay results showed significantly increased sGAG production in G 2 chondrocytes at 2 weeks. Image analysis of alcian blue stained slides also showed significantly higher percentage of positive alcian blue stain in G 2 chondrocytes. This result suggests that 808-nm InGaAs diode laser with 1.0 W power output although cannot stimulate cell proliferation it can increase the cell secretion activity and sGAG deposition in alginate beads.