• 제목/요약/키워드: dimensionless

검색결과 1,064건 처리시간 0.023초

Vibration analysis of double-bonded sandwich microplates with nanocomposite facesheets reinforced by symmetric and un-symmetric distributions of nanotubes under multi physical fields

  • Mohammadimehr, Mehdi;Zarei, Hassan BabaAkbar;Parakandeh, Ali;Arani, Ali Ghorbanpour
    • Structural Engineering and Mechanics
    • /
    • 제64권3호
    • /
    • pp.361-379
    • /
    • 2017
  • In this article, the vibration behavior of double-bonded sandwich microplates with homogeneous core and nanocomposite facesheets reinforced by carbon nanotube and boron nitride nanotube under multi physical fields such as 2D magnetic and electric fields is investigated. Symmetric and un-symmetric distributions of nanotubes are considered for facesheets of sandwich microplates such as uniform distribution and various functionally graded distributions. The double-bonded sandwich microplates rest on visco-Pasternak foundation. Material properties of sandwich microplates are obtained by the extended rule of mixture. The sinusoidal shear deformation theory (SSDT) is employed to describe displacement fields of sandwich microplates. Also, the dimensionless natural frequency is obtained by classical plate theory (CPT) and compared with the obtained results by SSDT. It can be seen that the obtained dimensionless natural frequencies by CPT are higher than SSDT. In order to study the material length scale parameters, modified strain gradient theory at micro scale is utilized and then, the equations of motion are derived using Hamilton's principle. The effects of different parameters such as foundation parameters including Winkler, shear layer and damping coefficients, various distributions and volume fraction of nanotubes, core to facesheet thickness ratio, aspect and side ratios on the dimensionless natural frequencies are discussed in details. The results of present work can be used to optimum design and control of similar systems such as micro-electro-mechanical and nano-electro-mechanical devices.

Dimensional analysis of base-isolated buildings to near-fault pulses

  • Istrati, Denis;Spyrakos, Constantine C.;Asteris, Panagiotis G.;Panou-Papatheodorou, Eleni
    • Structural Engineering and Mechanics
    • /
    • 제75권1호
    • /
    • pp.33-47
    • /
    • 2020
  • In this paper the dynamic behavior of an isolated building subjected to idealized near-fault pulses is investigated. The building is represented with a simple 2-DOF model. Both linear and non-linear behavior of the isolation system is considered. Using dimensional analysis, in conjunction with closed form mathematical idealized pulses, appropriate dimensionless parameters are defined and self-similar curves are plotted on dimensionless graphs, based on which various conclusions are reached. In the linear case, the role of viscous damping is examined in detail and the existence of an optimum value of damping along with its significant variation with the number of half-cycles is shown. In the nonlinear case, where the behavior of the building depends on the amplitude of the excitation, the benefits of dimensional analysis are evident since the influence of the dimensionless 𝚷-terms is easily examined. Special consideration is given to the normalized strength of the non-linear isolation system that appears to play a complex role which greatly affects the response of the 2-DOF. In the last part of the paper, a comparison of the responses to idealized pulses between a linear fixed-base SDOF and the respective isolated 2-DOF with both linear and non-linear damping is conducted and it is shown that, under certain values of the superstructure and isolation system characteristics, the use of an isolation system can amplify both the normalized acceleration and displacement of the superstructure.

삼각도형에 의한 단위도의 유도에 관한 연구 (A Study on the Unit Hydrograph Derivation by the Triangular Form)

  • 윤학기;김시원;서승덕
    • 한국농공학회지
    • /
    • 제19권2호
    • /
    • pp.4377-4384
    • /
    • 1977
  • The curvilinear hydrograph can be replaced by an equivalent triangular hydrograph which is more easily constructed and, for routing through reservoirs or stream channels, gives results about as accurate as those obtained using the curvilinear hydrograph. A synthetic hydrograph is prepared using the data from a number of watersheds to develop a dimensionless unit hydrograph applicable to ungauged watersheds. The dimensionless unit hydrograph for the NakDong River Basin was prepared from the unit hydrographs of a variety of nine subwatersheds. The equation for the peak rate of flow (unit volume of runoff in 1.0mm) was derived as {{{{ { q}_{p } = { 0.21AR} over { {T }_{p } } }}}} The results summarized in this study are as follows: 1) It found that the watershed lag time (Lg, hrs) could be expressed by Lg=0.253(L.Lca)0.4171 The product L.Lca is a measure of the size and shape of the watershed. Correlation coefficient for Lg was 0.97 which defined with high significance. 2) The base length of the unitgraph, in hours, was adopted as Tb=17.51+2.073Lg with high significant correlation coefficient, 0.92. 3) Time in hour from start of rise to peak rate (TP) generally occured at the position of 0.289 Tb with some indication of higher values for larger watershed. 4) Triangular hydrograph is a dimensionless unitgraph prepared from the 40 unitgraphs. The equation is shown as {{{{ { q}_{p } = { K.A.R} over { { T}_{p } } }}}}. The constant K=0.21 is defined to NakDong River basin. 5) In the light of the results analyzed in this study, average errors in the peak discharge of the Trjangular unitgraph was estimated as 5.34 percent to the peak of observed average unitgraph. Each ordinate of the Triangular unitgraph was approached closely to the observed one.

  • PDF

Bi-axial and shear buckling of laminated composite rhombic hypar shells

  • Chaubey, Abhay K.;Raj, Shubham;Tiwari, Pratik;Kumar, Ajay;Chakrabarti, Anupam;Pathak, K.K.
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.227-241
    • /
    • 2020
  • The bi-axial and shear buckling behavior of laminated hypar shells having rhombic planforms are studied for various boundary conditions using the present mathematical model. In the present mathematical model, the variation of transverse shear stresses is represented by a second-order function across the thickness and the cross curvature effect in hypar shells is also included via strain relations. The transverse shear stresses free condition at the shell top and bottom surfaces are also satisfied. In this mathematical model having a realistic second-order distribution of transverse shear strains across the thickness of the shell requires unknown parameters only at the reference plane. For generality in the present analysis, nine nodes curved isoparametric element is used. So far, there exists no solution for the bi-axial and shear buckling problem of laminated composite rhombic (skew) hypar shells. As no result is available for the present problem, the present model is compared with suitable published results (experimental, FEM, analytical and 3D elasticity) and then it is extended to analyze bi-axial and shear buckling of laminated composite rhombic hypar shells. A C0 finite element (FE) coding in FORTRAN is developed to generate many new results for different boundary conditions, skew angles, lamination schemes, etc. It is seen that the dimensionless buckling load of rhombic hypar increases with an increase in c/a ratio (curvature). Between symmetric and anti-symmetric laminations, the symmetric laminates have a relatively higher value of dimensionless buckling load. The dimensionless buckling load of the hypar shell increases with an increase in skew angle.

정사각단면 $180^{\circ}C$ 곡덕트에서 층류진동유동의 유동 특성에 관한 연구 (A study on flow characteristics of laminar oscillatory flows in a square-sectional $180^{\circ}C$ curved duct)

  • 박길문;조병기;봉태근
    • 대한기계학회논문집B
    • /
    • 제22권2호
    • /
    • pp.139-152
    • /
    • 1998
  • In the present study, the flow characteristics of developing laminar oscillatory flows in a square -sectional 180 deg. curved duct are investigated experimentally. The experimental study using air in a square-sectional 180 deg. curved duct is carried out to measure velocity distributions with a data acquisition and LDV (Laser Doppler Velocimetry) processing system. In this system, Rotating Machinery Resolver (RMR) and PHASE program are used to obtain the results of unsteady flows. The major flow characteristics of developing oscillatory flows are found by analyzing velocity curves, mean velocity profiles, time-averaged velocity distribution of secondary flow, wall shear stress distributions, and entrance lengths. In a lower dimensionless angular frequency, the axial velocity distribution of laminar oscillatory flow in a curved duct shows a convex shape in a central part and axial symmetry. The maximum value of wall shear stress in a lower dimensionless angular frequency is located in an outside wall, but according to increasing the dimensionless angular frequency, the maximum of wall shear stress is moved to inner wall. The entrance lengths of laminar oscillatory flows in a square-sectional 180 deg. curved duct is obtained to 90 deg. of bended angle of duct in this experimental conditions.

Effect of Functional Ankle Instability and Surgical Treatment on Dynamic Postural Stability and Leg Stiffness Variables during Vertical-Drop Landing

  • Jeon, Kyoung Kyu;Kim, Kew Wan;Ryew, Che Cheong;Hyun, Seung Hyun
    • 한국운동역학회지
    • /
    • 제28권2호
    • /
    • pp.135-141
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the effect of functional ankle instability (FAI) and surgical treatment (ST) on postural stability and leg stiffness during vertical-drop landing. Method: A total of 21 men participated in this study (normal [NOR]: 7, FAI: 7, ST: 7). We estimated dimensionless leg stiffness as the ratio of the peak vertical ground reaction force and the change in stance-phase leg length. Leg length was calculated as the distance from the center of the pelvis to the center of pressure under the foot. Furthermore, the analyzed variables included the loading rate and the dynamic postural stability index (DPSI; medial-lateral [ML], anterior-posterior [AP], and vertical [V]) in the initial contact phase. Results: The dimensionless leg stiffness in the FAI group was higher than that of the NOR group and the ST group (p = .018). This result may be due to a smaller change in stance-phase leg length (p = .001). DPSI (ML, AP, and V) and loading rate did not show differences according to the types of ankle instability during drop landing (p > .05). Conclusion: This study suggested that the dimensionless leg stiffness was within the normal range in the ST group, whereas it was increased by the stiffness of the legs rather than the peak vertical force during vertical-drop landing in the FAI group. Identifying these potential differences may enable clinicians to assess ankle instability and design rehabilitation protocols specific for the impairment.

Hydro-thermo-mechanical biaxial buckling analysis of sandwich micro-plate with isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets based on FSDT on elastic foundations

  • Rajabi, Javad;Mohammadimehr, Mehdi
    • Steel and Composite Structures
    • /
    • 제33권4호
    • /
    • pp.509-523
    • /
    • 2019
  • In the present work, the buckling analysis of micro sandwich plate with an isotropic/orthotropic cores and piezoelectric/polymeric nanocomposite face sheets is studied. In this research, two cases for core of micro sandwich plate is considered that involve five isotropic Devineycell materials (H30, H45, H60, H100 and H200) and an orthotropic material also two cases for facesheets of micro sandwich plate is illustrated that include piezoelectric layers reinforced by carbon and boron-nitride nanotubes and polymeric matrix reinforced by carbon nanotubes under temperature-dependent and hydro material properties on the elastic foundations. The first order shear deformation theory (FSDT) is adopted to model micro sandwich plate and to apply size dependent effects from modified strain gradient theory. The governing equations are derived using the minimum total potential energy principle and then solved by analytical method. Also, the effects of different parameters such as size dependent, side ratio, volume fraction, various material properties for cores and facesheets and temperature and humidity changes on the dimensionless critical buckling load are investigated. It is shown from the results that the dimensionless critical buckling load for boron nitride nanotube is lower than that of for carbon nanotube. It is illustrated that the dimensionless critical buckling load for Devineycell H200 is highest and lowest for H30. Also, the obtained results for micro sandwich plate with piezoelectric facesheets reinforced by carbon nanotubes (case b) is higher than other states (cases a and c).The results of this research can be used in aircraft, automotive, shipbuilding industries and biomedicine.

Active tuned tandem mass dampers for seismic structures

  • Li, Chunxiang;Cao, Liyuan
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.143-162
    • /
    • 2019
  • Motivated by a simpler and more compact hybrid active tuned mass damper (ATMD) system with wide frequency spacing (i.e., high robustness) but not reducing the effectiveness using the least number of ATMD units, the active tuned tandem mass dampers (ATTMD) have been proposed to attenuate undesirable oscillations of structures under the ground acceleration. Likewise, it is expected that the frequency spacing of the ATTMD is comparable to that of the active multiple tuned mass dampers (AMTMD) or the multiple tuned mass dampers (MTMD). In accordance with the mode generalised system in the specific vibration mode being controlled (simply referred herein to as the structure), the closed-form expression of the dimensionless displacement variances has been derived for the structure with the attached ATTMD. The criterion for the optimum searching may then be determined as minimization of the dimensionless displacement variances. Employing the gradient-based optimization technique, the effects of varying key parameters on the performance of the ATTMD have been scrutinized in order to probe into its superiority. Meanwhile, for the purpose of a systematic comparison, the optimum results of two active tuned mass dampers (two ATMDs), two tuned mass dampers (two TMDs) without the linking damper, and the TTMD are included into consideration. Subsequent to work in the frequency domain, a real-time Simulink implementation of dynamic analysis of the structure with the ATTMD under earthquakes is carried out to verify the findings of effectiveness and stroke in the frequency domain. Results clearly show that the findings in the time domain support the ones in the frequency domain. The whole work demonstrates that ATTMD outperforms two ATMDs, two TMDs, and TTMD. Thereinto, a wide frequency spacing feature of the ATTMD is its highlight, thus deeming it a high robustness control device. Furthermore, the ATTMD system only needs the linking dashpot, thus embodying its simplicity.

Huff의 4분위법을 이용한 지속기간별 연 최대치 강우의 시간분포 특성연구 (Time Distribution Characteristics of an Annual Maximum Rainfall According to Rainfall Durations using Huff's Method)

  • 이정규;추현재
    • 대한토목학회논문집
    • /
    • 제26권5B호
    • /
    • pp.519-528
    • /
    • 2006
  • 수공구조물 설계에서 가장 중요한 일은 설계홍수량을 결정하는 것이다. 따라서 설계홍수량 산정에 영향을 미치는 여러 가지 요소 중 적절한 설계 강우의 시간분포 방법을 선택하는 것은 중요한 일이다. 설계 강우의 시간분포 방법에는 여러 가지 방법들이 있으며, 그 중에서 최근 첨두홍수량 산정을 위한 설계 강우의 시간분포 방법에 많이 이용하고 있는 Huff의 4분위법은 6시간 이상의 무강우시간을 갖는 강우사상을 자료로 이용, 분석하여 설계 강우의 시간분포 방법을 제시한 방법이다. 본 연구에서는 Huff의 4분위법에서 이용한 자료와 달리 1961년부터 2004년까지 서울지역 강우 관측자료 중 지속기간별 연 최대치 강우자료를 이용하여 강우의 시간분포 특성을 분석하고 이전의 연구 결과와 비교하였다. 각각의 결과에 대하여 비교한 결과 서울지역의 경우 연 최대치 강우의 지속기간이 짧을 경우 무차원 누가곡선이 Huff의 4분위법 결과에 비하여 비교적 완만하게 나타났으며, 지속기간이 점점 증대될수록 무차원 누가곡선은 Huff의 4분위법 결과와 유사하게 나타났다.

모래와 실트의 혼합층에서 순간충격시험에 의한 지하수위 강하구역의 공극체적 산정 (The Pore Volume of Groundwater Level Drawdown Zone Through Slug/Bail Tests in Sand and Silt Soils)

  • 김태영;강동환;정상용;양성일;이민희
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제12권4호
    • /
    • pp.1-7
    • /
    • 2007
  • 본 연구에서는 모래층(sbt-1공), 실트질 모래층(sbt-2공) 및 모래와 실트질 모래의 혼합층(sbt-3공)에서 순간충격시험이 수행되었다. 그리고, 현장시험에 의해 산정된 수리전도도와 비저류계수를 이용하여 회수시험 시 지하수위 강하구역의 공극체적을 산정하였다. 순간충격시험의 해석은 KGS 모델이 가장 적합하였으며, 주입시험과 회수시험 시 평균수리전도도는 sbt-1공 $6.65{\times}10^{-5}$m/sec, sbt-2공 $6.33{\times}10^{-6}$m/sec, sbt-3공 $3.72{\times}10^{-5}$m/sec이며, 평균비저류계수는 sbt-1공 0.0225, sbt-2공 0.0177, sbt-3공 0.0259로 산정되었다. 투수량계수, 저류계수, 시험시간 및 시험공 제원을 이용하여 무차원 시간과 무차원 우물저류계수를 산정하였다. 그리고, Cooper 등(1967)이 제시한 변수 ${\alpha}$${\beta}$를 이용하여 무차원 수두강하량이 선정되었다. 산정된 무차원 시간, 무차원 우물저류계수 및 무차원 수두강하량을 이용하여 순간충격시험 시의 영향반경이 산정되었다. 주입시험과 회수시험 시 평균영향반경은 sbt-1공 1.377 m, sbt-2공 1.253 m, sbt-3공 1.558 m로 산정되었다. 그리고, 회수시험 시 더미 회수에 의한 지하수위 강하구역의 공극체적은 sbt-1공 $145,636cm^3$, sbt-2공 $71,561cm^3$, sbt-3공 $100,418cm^3$로 산정되었으며, 시험공의 부피를 제외한 지하수위 강하구의 공극체적은 sbt-1공 $145,410cm^3$, sbt-2공 $71,353cm^3$, sbt-3공 $100,192cm^3$이었다.