• Title/Summary/Keyword: dimensional shrinkage

Search Result 227, Processing Time 0.024 seconds

Development of High-strength Polyethylene Terephthalate (PET) Sheet Through Low Melting Point Binder Compounding and Compression Process (저 융점 바인더 복합화 및 압착공정을 통한 고강도 폴리에틸렌 테레프탈레이트(PET) 시트 개발)

  • Moon, Jai Joung;Park, Ok-Kyung;Kim, Nam Hoon
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.282-287
    • /
    • 2020
  • In the present study, a high-strength polyethylene terephthalate (PET) sheet was fabricated through a densification process of low melting PET fiber (LMF) combined PET sheet. During the thermal heat treatment process of the combined LMF, individual PET fiber was connected, which in turn leads to the improvement of the interfacial bonding force between the fibers. Also, the densification of the PET sheet leads to reduce macrospore density and in return could enhance the binding force between the overlapped PET networks. Consequently, the asprepared LMF-PET sheet showed about 410% improved tensile strength and the same elongation compared to before compression. Besides, the enhanced bonding force can prevent the shrinkage of the PET fiber network and exhibited excellent dimensional stability.

A Novel Separator Membrane for Safer Lithium-ion Rechargeable Batteries

  • Lee, Sang-Young;Kim, Seok-Koo;Hong, Jang-Hyuck;Shin, Byeong-Jin;Park, Jong-Hyuck;Sohn, Joon-Yong;Jang, Hyun-Min;Ahn, Soon-Ho
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.69-70
    • /
    • 2006
  • In lithium-ion batteries, separator membrane's, main role is to physically isolate a cathode and an anode while maintaining rapid transport of ionic charge carriers during the passage of electric current. As far as battery safety is concerned, the electrical isolation of electrodes is most crucial since unexpected short-circuits across the membrane induces hot spots where thermal runaway may break out. Internal short-circuits are generally believed to occur by protrusions on the electrode surface either by unavoidable deposits of metallic impurities or by dendritic lithium growth during battery operation. Another cause is shrinkage of the separator membrane when exposed to heat. If separator membrane can be engineered to prevent the internal short-circuit, it will not be difficult to improve lithium-ion batteries' safety. Commonly the separators employed in lithium-ion batteries are made of polyethylene (PE) and/or polypropylene (PP). These materials have terrible limitations in preventing the fore-mentioned internal short-circuit between electrodes due to their poor dimensional stability and mechanical strength. In this study we have developed a novel separator membrane that possesses very high thermal and mechanical stability. The cells employing this separator provided noticeable safety improvement in the various abuse tests.

  • PDF

A Study on Automation of Steel Plate Forming by Heating Method (열간가공에 의한 강판의 곡 가공 자동화 시스템)

  • B.I. Lee;H.S. Yoo;G.G. Byun;H.G. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.2
    • /
    • pp.34-44
    • /
    • 2002
  • Approximately 70 percent of shop's hull plate consists of three-dimensional curved shell. Concerning with the research on the automation of plate forming many studies have been carried out for the last decade. The purpose of this study is to develop the simulator of heating on the basis of the reasonable mechanical model representing a heating phenomenon. The beating experiment has been carried out with varying parameters influencing on the results of heating information at the kinematics analysis, simulatorestimate the shape of deformed plate that process along the processing information. When we get the initial shape and the object shape, we calculate the processing information first, using kinematics analysis. In a simulator we estimate deformed shape from the processing information. After this we compare deformed shape and object shape. If the error of deformed shape and object shape is in the proper limits, that information is determined the final processing information. Else we repeat the process changing variable.

The comparison of accuracy on three-unit fixed dental prosthesis made with CAD/CAM milling machines (치과 캐드캠 밀링장비에 따른 3본브릿지의 정확도 비교)

  • Bae, So-Yeon;Park, Jin-Young;Kim, Ji-Hwan;Kim, Hae-Young;Kim, Myung-Bae;Kim, Woong-Chul
    • Journal of Technologic Dentistry
    • /
    • v.37 no.1
    • /
    • pp.9-15
    • /
    • 2015
  • Purpose: The purpose of this study was to compare the accuracy of the maxillary three-unit fixed dental prosthesis (FDPs) made using two CAD/CAM milling machines : DCM Group(Dentaim CAD/CAM milling machine), WCM Group(Wieland CAD/CAM milling machine). Methods: Each of 10 duplicate models was scanned by blue light scanner(Identica, Medit, Korea), and the three-unit FDPs (STL file) was designed using DelcamCAD. A total of 20 three-unit FDPs was fabricated, comprising 2 groups of 10 specimens each (shrinkage ratio is 1:1). The first three-unit FDPs STL file was used as a CAD reference model (CRM). Obtained STL files by scanning the inner surface of three-unit FDPs were convened into the point clouds-ASC II files. Discrepancies between the point clouds and CRM were measured by superimposition software. Statistical methods to analyze the data were used non-parametric method. The mean (SD) values were compared by a Mann-Whitney U-test. Type one error rate was set at 0.05. Results: WCM group had small discrepancies with $2.17{\mu}m$ of mean value compared to $4.44{\mu}m$ in DCM group. The accuracy values between the two groups showed a sratistically significant difference (Table 2, p<.05). Conclusion: The accuracy of the three-unit fixed dental prosthesis(FDPs) made of two CAD/CAM milling machines were statistically different. Accuracy with which the prosthesis made of WCM group was superior.

Investigation of Carbonization Mechanism of Wood (II) (목재의 탄화기구 해석(II))

  • Kwon, Sung-Min;Kim, Nam-Hun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.45-52
    • /
    • 2007
  • The anatomical characteristics of Quercus variabilis woods carbonized at 310 to $350^{\circ}C$ were examined with an optical and scanning electron microscopy, and an X-ray diffraction analysis. Dimensional change and weight loss were also investigated. Volume of wood samples decreased with increasing the carbonization temperature, and checks were developed along with radial direction. Vessel diameter in tangential direction showed higher shrinkage than that in radial direction. Weight loss of samples increased with increasing carbonization temperature. Especially, the weight loss rapidly increased at the temperature ranging from 330 to $340^{\circ}C$. SEM study presented that the cell walls of samples carbonized at below $320^{\circ}C$ showed the layering structure. However, it was revealed that the layering structure was disappeared at $330^{\circ}C$ and over and showed an amorphous-like structure without cell wall layering. Interestingly, the existence of cellulose crystalline substance at $340^{\circ}C$ was confirmed by X-ray diffraction analysis and it was not detected at $350^{\circ}C$. Consequently, it is considered that the critical temperature for carbonization of wood was around $350^{\circ}C$.

A Study on the Molding Characteristics of Injection Compression Molding Through Computer Simulation (컴퓨터 해석을 통한 사출압축성형의 성형특성에 관한 연구)

  • Chun, Y.H.;An, H.G.;Lyu, M.Y.
    • Elastomers and Composites
    • /
    • v.47 no.4
    • /
    • pp.341-346
    • /
    • 2012
  • Injection molding is one of the widely used polymer processing operations. It is being used for not only conventional injection molding but gas injection molding, water injection molding, and injection compression molding. Injection compression molding involves injection and compression operation, and it gives uniform physical property and high dimensional quality of product. In this study, injection compression characteristics for various product shapes have been investigated by computer simulation. Product containing side wall showed not much effective in injection compression molding since wall thickness direction was perpendicular to the compression direction. Uniform and low shrinkage was observed in injection compression molding comparing conventional injection molding. Subsequently injection compression molding can be used for molding precise product. Optimal injection compression molding condition was obtained using design of experiment for plastic lens and the results were compared with conventional injection molding.

Evaluations of Swaging Process for Rotor Core of Induction Motors (유도전동기 회전자 제작시 압입작업 평가)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.21-26
    • /
    • 2016
  • This study evaluates the magnitudes and distributions of contact tangential forces with the swaging depth of punch acting at the contact surfaces between a rotor core slot and a Cu bar during a sequential rotor core swaging process. The effects of the core slot shape on the magnitudes and distributions of the total contact forces were investigated to improve the productivity of the rotor core swaging process. Parametric elastic-plastic numerical analyses were performed using simplified two-dimensional cyclic symmetric plane strain models to evaluate the contact force distributions at the contact surfaces. The numerical analysis results show that the total contact tangential forces increased by about 55% with the adjacent Cu bar swaging process. The length of the core slot is a dominant factor in the core slot design as result of the increased total contact tangential forces during the swaging process of the rotor core.

Evaluations of Swaging Process for Rotor Core of Induction Motors II (유도전동기 회전자 제작시 압입작업 평가 II)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.464-469
    • /
    • 2017
  • This study evaluated the displacements of a Cu bar in the Y-direction and the relationship between swaging pressures and total contact forces to increase the productivity of the rotor core swaging process. Elastic-plastic numerical analyses of four different Cu bar shapes were performed with a constant swaging pressure to evaluate the displacements of the Cu bar in the Y-direction and the contact force distributions at the contact surfaces during the swaging process. Based on the numerical analysis results, the following conclusions were obtained. First, a simplified 2-dimensional cyclic symmetric analysis model was developed for the numerical analysis of the rotor core swaging process. Second, the final displacements of the Cu bar in the Y-direction were nearly the same as the change of the Cu bar size at a constant swaging pressure. Third, a linear relationship between the swaging pressures and the total contact forces, the so called resistance forces, was suggested.

Analysis of deformation according to post-curing of complete arch artificial teeth for temporary dentures printed with a DLP printer (DLP 프린터로 출력한 임시의치용 전악 인공치아의 후경화에 따른 변형 분석)

  • Kim, Dong-Yeon;Lee, Gwang-Young
    • Journal of Technologic Dentistry
    • /
    • v.43 no.2
    • /
    • pp.48-55
    • /
    • 2021
  • Purpose: This study aimed to analyze deformation according to post-curing of complete arch artificial teeth for temporary dentures printed with a digital light processing (DLP) printer. Methods: An edentulous model was prepared and an occlusal rim was produced. The edentulous model and occlusal rim were scanned using a model scanner. A complete denture was designed using a dental computer-aided design, and the denture base and artificial tooth were separated. Ten complete arch artificial teeth were printed using a 3D printer (DLP). Complete arch artificial teeth was classified into the following three groups: a group no post-curing (NC), a group with 10 minutes post-curing (10M), and a group with 20 minutes post-curing (20M). Specimens were scanned using a model scanner. The scanned data were overlapped with the reference data. Statistical analysis was performed using one-way ANOVA analysis of variance, Kruskal-Wallis test, and Mann-Whitney U test (α=0.05). Results: Regarding the overall deviation of complete arch artificial teeth, the NC group showed the lowest mean deviation of 111.13 ㎛ and the 20M group showed the highest mean deviation of 131.03 ㎛. There were statistically significant differences among the three groups (p<0.05). Conclusion: The complete arch artificial tooth showed deformation due to post-curing. In addition, the largest shrinkage deformation was observed at 10 minutes of post-curing, whereas the least deformation was observed at 20 minutes.

Fused Deposition Modeling of Iron-alloy using Carrier Composition

  • Harshada R. Chothe;Jin Hwan Lim;Jung Gi Kim;Taekyung Lee;Taehyun Nam;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • v.58 no.1
    • /
    • pp.44-56
    • /
    • 2023
  • Additive manufacturing (AM) or three-dimensional (3D) printing of metals has been drawing significant attention due to its reliability, usefulness, and low cost with rapid prototyping. Among the various AM technologies, fused deposition modeling (FDM) or fused filament fabrication is receiving much interest because of its simple manufacturing processing, low material waste, and cost-effective equipment. FDM technology uses metal-filled polymer filaments for 3D printing, followed by debinding and sintering to fabricate complex metal parts. An efficient binder is essential for producing polymer filaments and the thermal post-processing of printed objects. This study involved an in-depth investigation of and a fabrication route for a novel multi-component binder system with steel alloy powder (45 vol.%) ranging from filament fabrication and 3D printing to debinding and sintering. The binder system consisted of polyvinyl pyrrolidone (PVP) as a binder and thermoplastic polyurethane (TPU) and polylactic acid (PLA) as a carrier. The PVP binder held the metal components tightly by maintaining their stoichiometry, and the TPU and PLA in the ratio of 9:1 provided flexibility, stiffness, and strength to the filament for 3D printing. The efficacy of the binder system was examined by fabricating 3D-printed cubic structures. The results revealed that the thermal debinding and sintering processes effectively removed the binder/carrier from the cubic structures, resulting in isotropic shrinkage of approximately 15.8% in all directions. The scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) patterns displayed the microstructure behavior, phase transition, and elemental composition of the 3D cubic structure.