• Title/Summary/Keyword: dimension-reduction

Search Result 534, Processing Time 0.029 seconds

Classification Using Sliced Inverse Regression and Sliced Average Variance Estimation

  • Lee, Hakbae
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.2
    • /
    • pp.275-285
    • /
    • 2004
  • We explore classification analysis using graphical methods such as sliced inverse regression and sliced average variance estimation based on dimension reduction. Some useful information about classification analysis are obtained by sliced inverse regression and sliced average variance estimation through dimension reduction. Two examples are illustrated, and classification rates by sliced inverse regression and sliced average variance estimation are compared with those by discriminant analysis and logistic regression.

Method-Free Permutation Predictor Hypothesis Tests in Sufficient Dimension Reduction

  • Lee, Kyungjin;Oh, Suji;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.4
    • /
    • pp.291-300
    • /
    • 2013
  • In this paper, we propose method-free permutation predictor hypothesis tests in the context of sufficient dimension reduction. Different from an existing method-free bootstrap approach, predictor hypotheses are evaluated based on p-values; therefore, usual statistical practitioners should have a potential preference. Numerical studies validate the developed theories, and real data application is provided.

Intensive numerical studies of optimal sufficient dimension reduction with singularity

  • Yoo, Jae Keun;Gwak, Da-Hae;Kim, Min-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.303-315
    • /
    • 2017
  • Yoo (2015, Statistics and Probability Letters, 99, 109-113) derives theoretical results in an optimal sufficient dimension reduction with singular inner-product matrix. The results are promising, but Yoo (2015) only presents one simulation study. So, an evaluation of its practical usefulness is necessary based on numerical studies. This paper studies the asymptotic behaviors of Yoo (2015) through various simulation models and presents a real data example that focuses on ordinary least squares. Intensive numerical studies show that the $x^2$ test by Yoo (2015) outperforms the existing optimal sufficient dimension reduction method. The basis estimation by the former can be theoretically sub-optimal; however, there are no notable differences from that by the latter. This investigation confirms the practical usefulness of Yoo (2015).

Dimension Reduction in Time Series via Partially Quanti ed Principal Componen (부분-수량화를 통한 시계열 자료 분석에서의 차원축소)

  • Park, J.A.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.5
    • /
    • pp.813-822
    • /
    • 2010
  • We investigate a possible achievement in dimension reduction of time series via partially quantified principal component. Partial quantification technique allows us in modeling to accommodate artificial variable(s) of practical importance which is defined subjectively by the data analyst. Suggested procedures are described and in turn illustrated in detail by analyzing monthly unemployment rates in Korea.

The roles of differencing and dimension reduction in machine learning forecasting of employment level using the FRED big data

  • Choi, Ji-Eun;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.5
    • /
    • pp.497-506
    • /
    • 2019
  • Forecasting the U.S. employment level is made using machine learning methods of the artificial neural network: deep neural network, long short term memory (LSTM), gated recurrent unit (GRU). We consider the big data of the federal reserve economic data among which 105 important macroeconomic variables chosen by McCracken and Ng (Journal of Business and Economic Statistics, 34, 574-589, 2016) are considered as predictors. We investigate the influence of the two statistical issues of the dimension reduction and time series differencing on the machine learning forecast. An out-of-sample forecast comparison shows that (LSTM, GRU) with differencing performs better than the autoregressive model and the dimension reduction improves long-term forecasts and some short-term forecasts.

Intensive comparison of semi-parametric and non-parametric dimension reduction methods in forward regression

  • Shin, Minju;Yoo, Jae Keun
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.5
    • /
    • pp.615-627
    • /
    • 2022
  • Principal Fitted Component (PFC) is a semi-parametric sufficient dimension reduction (SDR) method, which is originally proposed in Cook (2007). According to Cook (2007), the PFC has a connection with other usual non-parametric SDR methods. The connection is limited to sliced inverse regression (Li, 1991) and ordinary least squares. Since there is no direct comparison between the two approaches in various forward regressions up to date, a practical guidance between the two approaches is necessary for usual statistical practitioners. To fill this practical necessity, in this paper, we newly derive a connection of the PFC to covariance methods (Yin and Cook, 2002), which is one of the most popular SDR methods. Also, intensive numerical studies have done closely to examine and compare the estimation performances of the semi- and non-parametric SDR methods for various forward regressions. The founding from the numerical studies are confirmed in a real data example.

Two variations of cross-distance selection algorithm in hybrid sufficient dimension reduction

  • Jae Keun Yoo
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.2
    • /
    • pp.179-189
    • /
    • 2023
  • Hybrid sufficient dimension reduction (SDR) methods to a weighted mean of kernel matrices of two different SDR methods by Ye and Weiss (2003) require heavy computation and time consumption due to bootstrapping. To avoid this, Park et al. (2022) recently develop the so-called cross-distance selection (CDS) algorithm. In this paper, two variations of the original CDS algorithm are proposed depending on how well and equally the covk-SAVE is treated in the selection procedure. In one variation, which is called the larger CDS algorithm, the covk-SAVE is equally and fairly utilized with the other two candiates of SIR-SAVE and covk-DR. But, for the final selection, a random selection should be necessary. On the other hand, SIR-SAVE and covk-DR are utilized with completely ruling covk-SAVE out, which is called the smaller CDS algorithm. Numerical studies confirm that the original CDS algorithm is better than or compete quite well to the two proposed variations. A real data example is presented to compare and interpret the decisions by the three CDS algorithms in practice.

Aerosol optical depth prediction based on dimension reduction methods

  • Jungkyun Lee;Yaeji Lim
    • Communications for Statistical Applications and Methods
    • /
    • v.31 no.5
    • /
    • pp.521-533
    • /
    • 2024
  • As the concentration of fine dust has recently increased, numerous related studies are being conducted to address this issue. Aerosol optical depth (AOD) is a vital atmospheric parameter for measuring the optical properties of aerosols in the atmosphere, providing crucial information related to fine dust. In this paper, we apply three dimension reduction methods, nonnegative matrix factorization (NMF), empirical orthogonal functions (EOF) analysis and independent component analysis (ICA), to AOD data to analyze the patterns of fine dust in the East Asia region. Through a comparison of three dimension reduction methods, we observe that some patterns are observed in all three method, while some information are only extracted in a specific method. Additionally, we forecast AOD levels based on three methods, and compare the predictive performance of the three methodologies.

THE DIMENSION REDUCTION ALGORITHM FOR THE POSITIVE REALIZATION OF DISCRETE PHASE-TYPE DISTRIBUTIONS

  • Kim, Kyung-Sup
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.16 no.1
    • /
    • pp.51-64
    • /
    • 2012
  • This paper provides an efficient dimension reduction algorithm of the positive realization of discrete phase type(DPH) distributions. The relationship between the representation of DPH distributions and the positive realization of the positive system is explained. The dimension of the positive realization of a discrete phase-type realization may be larger than its McMillan degree of probability generating functions. The positive realization with sufficient large dimension bound can be obtained easily but generally, the minimal positive realization problem is not solved yet. We propose an efficient dimension reduction algorithm to make the positive realization with tighter upper bound from a given probability generating functions in terms of convex cone problem and linear programming.

Effect of Dimension in Optimal Dimension Reduction Estimation for Conditional Mean Multivariate Regression (다변량회귀 조건부 평균모형에 대한 최적 차원축소 방법에서 차원수가 결과에 미치는 영향)

  • Seo, Eun-Kyoung;Park, Chong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.107-115
    • /
    • 2012
  • Yoo and Cook (2007) developed an optimal sufficient dimension reduction methodology for the conditional mean in multivariate regression and it is known that their method is asymptotically optimal and its test statistic has a chi-squared distribution asymptotically under the null hypothesis. To check the effect of dimension used in estimation on regression coefficients and the explanatory power of the conditional mean model in multivariate regression, we applied their method to several simulated data sets with various dimensions. A small simulation study showed that it is quite helpful to search for an appropriate dimension for a given data set if we use the asymptotic test for the dimension as well as results from the estimation with several dimensions simultaneously.