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Abstract

Yoo (2015, Statistics and Probability Letters, 99, 109}dE3ives theoretical results in an optimalistient
dimension reduction with singular inner-product matrixeTresults are promising, but Yoo (2015) only presents
one simulation study. So, an evaluation of its practicafuleess is necessary based on numerical studies. This
paper studies the asymptotic behaviors of Yoo (2015) tHraagious simulation models and presents a real data
example that focuses on ordinary least squares. Intensiverical studies show that thé test by Yoo (2015)
outperforms the existing optimal ficient dimension reduction method. The basis estimatioméydrmer can
be theoretically sub-optimal; however, there are no netdifferences from that by the latter. This investigation
confirms the practical usefulness of Yoo (2015).

Keywords: chi-square test, optimality, singularity, sufficient dimension reduction

1. Introduction

Suficient dimension reduction (SDR) in regressionYoE R'|X € RP seeks to replace the original
p-dimensional predictorX by its lower-dimensional linear projection without lossmfiormation on
Y| X, which is equivalently expressed as:

Y L XIMTX, (1.1)

where Il stands for independendd, is ap x q matrix, andq < p.

DefineS(A) as a column subspace Afe RP*9. For M satisfying equation (1.18(M) is called a
dimension reduction subspace. If the intersection of adbfidle dimension reduction subspaces exists
and it is a dimension reduction subspace, it is unique andwmain The intersection is then called the
central subspace Syjx. SDR is a useful dimension reduction tool in high-dimenaiatata analysis
such as gene expression data (Chiaromonte and Martir@li2)2microarray data analysis (Li, 2006)
and survival analysis (Cook, 2003).

In SDR literature, the inference aBlyx is the main stream. Hereaftgrandd (< p) will be
represented as a true orthonormal basis matrix and the imendion ofSv,x, respectively. The goal
of SDR is placed on to the estimationpandd.

Suppose that there exists a matfix= (6, ...,0y) € RP*9 such thaiS(6) = Sv\x. Since the
columns ofy spanSyx, we have a relation tha@ = ny for y € R%, Let @ be a known consistent
estimator ofg in sense thatyn{vec@) — vec@)} is asymptotically normally distributed with mean 0
and covariance matrik, where veaf) = (67.....6;)".
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Now consider the estimation of andy by arguments3 and C that minimize the following
quadratic objective function ové& andC:

Fa (B, C) = {vec(d) - vec(BC)}T V {vec(8) - vec(BC)}, (1.2)

whereB € RP*4, C e R™9, andV > 0 is apq x pq positive definite inner product matrix.

Cook and Ni (2005) and Shapiro (1986) and show that the mir@n® of equation (1.2) is a
consistent estimator of for any givenV > 0, in the sense tha$(B) converges taS(), which is
equal toSy)x. Since diferent choices o¥ > 0 provides diferent estimators af, the estimation ofy
by minimizing (1.2) forms a class of estimators called tiaimum discrepancy family (MDF). It is
unpopular to seled¥ to have the optimal properties among the MDF, which will becdssed later.
According to Shapiro (1986), it is a consistent estimatdghefinverse of the covariance mathix[
and the corresponding optimal quadratic discrepancy fomés

FO (B, C) = [vec(d) - vec(BC))' I {vec(d) - vec(BO)). (1.3)

Let 7 andy be the solutions to minimizEgpt in (1.3) andn be the sample size. Then the large
sample distribution ofFS™ = nF (i, 7) iS X2, gq-q)- N additionsf is asymptotically ficient, in the
sense that vegf) has the minimum variance among all elements in the MDF. Tinénmum variance
of vec@y) is described in the proof of Theorem 2 in Yoo (2015).

The y? distribution and the asymptotidfeciency are optimal properties among the MDF. Cook
and Ni (2005) use the statistity" to test H : d = mversus H : d > m,m = 0,...,min(p,q)
for estimatingd. The applications of MDFs in various dimension reductionthods can be found in
Cook and Ni (2005), Cook and Zhang (2014), and Yoo and Coo®{R0

In practice,I"* may be singular, and then the use of (1.3) can be problemBécently, Yoo
(2015) establishes theoretical results in such case. Hmwewly one simulation example is pre-
sented in Yoo (2015), so intensive numerical studies andladaga example for the illustration pur-
pose should be necessary to show the practical usefulnéle oésults of Yoo (2015). This paper
investigates the asymptotic behaviors of Yoo (2015) basedhoous simulated models.

The organization of this article is as follows. In Sectiontt® main results of Yoo (2015) are
briefly discussed with a focus on ordinary least square astira (OLS). Intensive numerical studies
and a real data example are presented in Section 3, and 5éctionmarizes the work.

2. Review: optimal sufficient dimension reduction (SDR) wit h singularity

The OLS cofficient vectorB € RP*" in the regression off € R"|X € RP is defined ag8 =

X 1cov(X,Y), whereX = cov(X). Under certain conditions, the columns@®fpanSyx, that is,
S(B) = Syx, sob and@ in Introduction are replaced with andﬁ, respectively. The conditions to
guarantee thaS(B8) = Sy)x will not be discussed here. For more about the conditions,ttworial
papers of Yoo (2016a, 2016b) regarding SDR are recommesileceS(8) = Syx, the relation that
B = npy isinduced. Define that = Y — E(Y) rﬂT{X — E(X)}, which is the OLS residual matrix. Then,
according to Yoo and Cook (20073/n{vecB) — vec(B)} tends to normal distribution with mean 0 and
covariancd™:

I = (I, 2% cov(ToLs) (Ir ®Z72),

whereToLs € R = vecZe") andZ = Z72(X — E(X)).
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To explain the results of Yoo (2015), it is necessary to ddfiegfollowing Jacobian matriAg:

_ [0ovec(BC) odvecBC)
A= { dvecB) ~ dvec(C) }

= (7T® Ip,lq®q).
(B=n.C=y)

Shapiro (1986) discusses thatn equation (1.2) is required to be positive definite${g). This
is equivalently stated that rankg) = rank(A;VAﬁ). Lemma A.3 in Cook and Ni (2005) allows us to
use a population quantity, rather than its sample versidhwithout any loss of generality.

With T singular with rankpq — k, the main results of Yoo (2015) need the following assunmptio
rank(Ag) = rank@;F‘Aﬁ).

According to Yoo (2015), the assumption is mild in practivecause the true dimensidof Sv|x
often turns out to be one or two in many SDR problems. Definelthas a Moore-Penrose inverse
suchthal' IT- =I'" andIT T =T.

Result1. Assume that rankf) = rank@eI'"Ag). Let ;" andy” be the solutions to minimizing
F3(B.C) = {vec(B) — vec(BC)}'I'"{vec) — vecBC)}. Then,nFy* = nF3({H".7") ~
X(Zp—d)(q—d)—k asymptotically.

Result 2. Assume that rankf) = rank(A¢I'"Ay). DefineV = {V : S(V) = S(I')}. Then vec§™y*)
has the minimum variance of vé&C) from (1.2) with any inner-product matrix ifv.

Since it is not always guaranteed thgv) = S(I'), the asymptotic ficiency in Result 2 is more
restrictive than the asymptoti¢ statistic in Result 1.

3. Numerical studies
3.1. Model configurations

If X have multi-collinearityl" can be singular. However, if so, the estimatio®efx through the OLS
is not desirable. Instead, the simulation models are sebuthé responses to have high-correlation,
which also can induce the singularityBjust like the example given in Yoo (2015). We consider the
following six models for numerical studies:
Model 1. (Xy,...,%s) "' N(0,1) I (es,...,es) " N(O, 1)

Yr=Xi+e1, Yo=X1+&2;, Ya= X1 + &3, Ya= Y1 + Seq.
Model 2. (X1,...,%s) "' N(0,1) I (es,...,es) " N(O, 1)

Y]_ = exp(Xl) + &1, Y2 = exp(Xl) + &2 Y3 = exp(Xl) + &3, Y4 = Y]_ + Sey4.

iid

Model 3. (Xq....,%s) © N(0,1) 1L (e1.....e4) "t
Yi=Xi+e1, Yo=X1+&2 Yz= X +é&3, Yg=Y1 + Sea.
Model 4. (X,...,%s) O N(0,1) 1L (eq,...,e4) Cts
Y, = exp(Xl) +ée1; Yo = exp(Xl) +& Y3 = exp(Xl) + &3, Yq = Y1 + Seq.
Model 5. (Xq,...,%s) "ts 1 (e1,...,e4) " N(O, 1)
Y1 = Xo(X1 + X2) + £1; Yo = exp(Xy + Xo) + &2 Y3 = expXo) + £3; Ya = Y1 + Sea.
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Model 6. (Xl, e X5) iid ts 1L (81, . ,84) i’ivd ts
Y]_ = Xj_(Xj_ + X2) + &1, Y2 = exp(Xl + X2) + &2 Y3 = exp(Xz) + &3; Y4 = Yj_ + Sey.

In all simulation models, two responses\af and Y, have high-correlation depending on values of
s = 0.01, 01, 0.2, 0.3, 0.4, 0.5. The structural dimens@for Models 1-4 is equal to one, whose
central subspace is spanned by the column 0d,@@ 0, 0)", equivalentlyX;. However, for Models

5 and 6,Sy)x is spanned by the two column of (@ 0,0,0)", (0, 1,0,0,0)"), equivalently ¥;, X5),
sod is equal to two. The predictors for Models 1-4 are indepetiggenerated froniN(0, 1), while
those for Models 5-6 are randomly sampled frortistribution with five degrees of freedorg).
For Models 1, 2, and 5 and Models 3, 4, and 6, the random errersidependently generated from
N(0, 1) andts, respectively. Models 2 and 4 have non-linear mean strestiand Models 5 and 6
have a non-linear relationship between predictors andinea+r means together.

The reason to usedistribution is because of the need to investigate the asytnfehaviors of
Yoo (2015) under thick-tailed distributions, which are mgrone to outliers thah(0, 1). Sample
sizesn are changed as= 25, 50, 100, 200, and each simulation model is iterated 5064

The singularityk varies from 0 to p — d) — 1 with increment by 1. The case bt= 0 is equivalent
to the optimal SDR proposed by Yoo and Cook (2007). In thedEBl, : d = 0, the values ok can
beQ1,23,...,(p-1), while those are, @, 2,...,(p - 2) for testing i : d = 1. Reasoning of not
using the values df larger than p — d) — 1 is as follows.

In the simulation, ifY; andY, are highly correlated, it would be ideal thats estimated after
removing eitheiy; or Y, or after replacingr; andY, by its linear combination such &&ew = (Y1 +
Y4)/2. The dimensionis then reduced from four to three, and thests of freedom for the dimension
testof B : d = mis (p— m)((r — 1) — m). The ditferences in degrees of freedom between before and
after the removal isf{— m). Therefore, the use of the singularkyarger than p—m) — 1 intrinsically
induces the reduction of data, before starting the dimensduction. So, such cases are ruled out. It
is recommended to use the guidelines to select the rangagiractice.

3.2. Results

To summarize a basis estimation, the averages of a square root oR? from the OLS regression
of Xy)7" X for Models 1-4 and the averages|of from X|3"X, i = 1,2, for Models 5 and 6 are
computed. If the true basis is well-estimated, the averafjg$ should be close to one.

To measure how well the true dimensidris estimated, for Models 1-4 and Models 5-6, the
percentages of the correct decisions tfiat 1 andd = 2 and the percentages of the decisions that
d > 2 andd > 3, which represents the observed levels, with level 5% amepeted, respectively. If
the true dimension is well-estimated, the former and lgiggcentages should be close to 95% and
5%, respectively.

First, we discuss the basis estimation results. Vangmgth fixing n = 50, the averages are
reported in Figure 1. For Models 5 and 6, the averagés [addlone are reported because the averages
of |rp| are about the same as thos¢r|dbr Models 1-4. According to Figure 1, for all simulation
models, there are no notableffédrences varying the values sf however, Yoo and Cook (2007)
show surprisingly poor performances. The minimum averads is over 0.8 and better with =
50. Summarizing these observations, Yoo (2015) is not atipedcause of concern for the basis
estimation.

Figures 2 and 3 summarized the dimension estimation for Mbdehich are the percentages of
the decision thadl = 1 and the observed level, respectively. The figures reptéisercharacteristic
behaviors observed in all the other simulation models dithl. Figures 4 and 5 present the summary
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Table 1: Dimension test in Minneapolis school data in Section 3.3

k=0 k=1 k=2 k=3 k=4
Ho:d=0 0.000 0.000 0.000 0.000 0.000
Ho:d=1 0.027 0.061 0.294 0.279 /N
Ho:d=2 0.534 NA N/A N/A N/A

of the dimension estimation for Models 5 and 6 wstk 0.01, 02, 0.5, because the results fee 0.1,
0.3, 04 are similar. Figures 2-5 indicate that, for any value& ahder consideration, Yoo (2015)
shows better performance in both the correct decision peages and the observed level than the
Yoo-Cook method. Especially, with a smaller sample sizéhsaagn = 25 andn = 50, there exist
notable diferences between Yoo (2015) and the Yoo-Cook method in MdddsThe small sample
behaviors are better with a larger valuekofin addition, by the comparison between Model 5 and
Model 6 in Figures 4 and 5, the dimension estimation is imgadty the distribution of predictors
rather than that of errors, when a nonlinear relation exiStsures 6 and 7 zoom Figures 2-5 at fixing
n = 50 for Models 1-6. According to the figures, the dimensiomesion seems independent of on
the size ofs, rather than the choices &f In addition the distribution of predictors provide a gegat
effect to the accuracy in the dimension estimation than thosleeofandom errors. According to the
observation, Yoo (2015) can improve the Yoo-Cook methotiéndimension estimation, alkd= 1 is
recommended as the default value.

Summarizing the numerical studies, Yoo (2015) can have eléeantages over the existing Yoo-
Cook method.

3.3. Real data example: Minneapolis school data

For the illustration purpose of Yoo (2015), a dataset to memathe performance of students in Min-
neapolis schools(= 63) are analyzed (Yoo, 2009). The dataset contains the pagesP, of stu-
dents in a school scoring above (A) and below (B) averagesorilsirdized fourth and sixth grade read-
ing comprehension tests, which are used as the four dimmaisiesponsey, = (Pa4, Pg4, Pas, Pgs)".
Subtracting either pair of grade specific percentages frongives the percentage of students scor-
ing about average on the test. The same five predictors usémbitf2009) are considered: (1) the
pupil teacher ratio, (2) the square roots of the percenthgailulren receiving aid to families with
dependent children, (3) the percentage of children natdiviith both biological parents (B), (4) the
percentage of adults in the school area who completed higboscand (5) the percentage of per-
sons in the area below the federal poverty level. The transftion is done to induce the required
condition to estimat&y,x.

The methods by Yoo (2015) and Yoo and Cook (2007), equivigi&fobb (2015) withk = 0, are
applied to estimate the structural dimension. Table 1 itspgbe p-values used to testH: d = m,
m=0,1,2. Table 1 indicates that, with level 5%, the Yoo-Cook mettetérmines thad = 2, while
Yoo (2015) withk = 1,2, 3 concludes thad = 1. The sample correlation cfiients betweePa,
andPg4 and betweerPas andPgg are -0.7699 and -0.8331, respectively. This indicatesPaaand
P4 and Pas and Pgg have strong linear relationships. Also, according to niicaestudies, with
smaller samples, Yoo (2015) with non-z&ris preferable td& = 0. Combining this, it would be more
desirable to decide that= 1.

4. Conclusion

Optimal SDR is a paradigm to estimate the central subspacnihiynizing the quadratic objective
functions with known initial estimates. Optimality mearfsdimension test and asymptotittieiency.
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Figure 6: Percentages of the decision that d varyings with n = 50; red dashed-line, 95% reference.
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Figure 7: Observed levels varyingwith n = 50; red dashed-line, 5% reference.
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According to Yoo and Cook (2007), the optimaticient dimension approach shows better estimation
results using the OLS to estima$gx. A possible problem arises, if the inner-product matrixiia t
objective function is singular. Yoo (2015) derives themadtresults for the optimal SDR with a
singular inner-product matrix. However, Yoo (2015) ladgkiehsive numerical studies and a real data
example. Therefore, various simulated models and a realadhetlysis should be investigated to show
the practical usefulness of Yoo (2015).

In this paper, intensive numerical studies are done to shewdtential advantages of Yoo (2015)
over existing Yoo and Cook (2007). Especially, in the dimengstimation, Yoo (2015) shows better
small sample results than Yoo and Cook (2007). A real datmpiaalso shows that the overestima-
tion of Yoo and Cook (2007) due to small sample sizes and higtetation between responses can
be prevented by using Yoo (2015). This confirms the practisafulness of Yoo (2015).
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