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Abstract
Yoo (2015, Statistics and Probability Letters, 99, 109–113) derives theoretical results in an optimal sufficient

dimension reduction with singular inner-product matrix. The results are promising, but Yoo (2015) only presents
one simulation study. So, an evaluation of its practical usefulness is necessary based on numerical studies. This
paper studies the asymptotic behaviors of Yoo (2015) through various simulation models and presents a real data
example that focuses on ordinary least squares. Intensive numerical studies show that theχ2 test by Yoo (2015)
outperforms the existing optimal sufficient dimension reduction method. The basis estimation by the former can
be theoretically sub-optimal; however, there are no notable differences from that by the latter. This investigation
confirms the practical usefulness of Yoo (2015).
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1. Introduction

Sufficient dimension reduction (SDR) in regression ofY ∈ R
r |X ∈ R

p seeks to replace the original
p-dimensional predictorsX by its lower-dimensional linear projection without loss ofinformation on
Y|X, which is equivalently expressed as:

Y X|MTX, (1.1)

where stands for independence,M is a p × q matrix, andq ≤ p.
DefineS(A) as a column subspace ofA ∈ Rp×q. For M satisfying equation (1.1),S(M) is called a

dimension reduction subspace. If the intersection of all possible dimension reduction subspaces exists
and it is a dimension reduction subspace, it is unique and minimal. The intersection is then called the
central subspace SY |X. SDR is a useful dimension reduction tool in high-dimensional data analysis
such as gene expression data (Chiaromonte and Martinelli, 2002), microarray data analysis (Li, 2006)
and survival analysis (Cook, 2003).

In SDR literature, the inference onSY |X is the main stream. Hereafterη andd (< p) will be
represented as a true orthonormal basis matrix and the true dimension ofSY |X, respectively. The goal
of SDR is placed on to the estimation ofη andd.

Suppose that there exists a matrixθ = (θ1, . . . , θq) ∈ R
p×q such thatS(θ) = SY |X. Since the

columns ofη spanSY |X, we have a relation thatθ = ηγ for γ ∈ R
d×q. Let θ̂ be a known consistent

estimator ofθ in sense that
√

n{vec(̂θ) − vec(θ)} is asymptotically normally distributed with mean 0
and covariance matrixΓ, where vec(θ) = (θT

1 , . . . , θ
T
q )T.
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Now consider the estimation ofη andγ by argumentsB̂ and Ĉ that minimize the following
quadratic objective function overB andC:

Fd (B,C) =
{

vec
(

θ̂
)

− vec(BC)
}T

V
{

vec
(

θ̂
)

− vec(BC)
}

, (1.2)

whereB ∈ Rp×d, C ∈ Rd×q, andV > 0 is apq × pq positive definite inner product matrix.
Cook and Ni (2005) and Shapiro (1986) and show that the minimizer B̂ of equation (1.2) is a

consistent estimator ofη for any givenV > 0, in the sense thatS(B̂) converges toS(η), which is
equal toSY |X. Since different choices ofV > 0 provides different estimators ofη, the estimation ofη
by minimizing (1.2) forms a class of estimators called theminimum discrepancy family (MDF). It is
unpopular to selectV to have the optimal properties among the MDF, which will be discussed later.
According to Shapiro (1986), it is a consistent estimator ofthe inverse of the covariance matrixΓ, Γ̂−1

and the corresponding optimal quadratic discrepancy function is

Fopt
d (B,C) =

{

vec
(

θ̂
)

− vec(BC)
}T
Γ̂
−1
{

vec
(

θ̂
)

− vec(BC)
}

. (1.3)

Let η̂ andγ̂ be the solutions to minimizeFopt
d in (1.3) andn be the sample size. Then the large

sample distribution ofnF̂opt
d = nF̂(η̂, γ̂) is χ2

(p−d)(q−d). In additionη̂ is asymptotically efficient, in the
sense that vec( ˆηγ̂) has the minimum variance among all elements in the MDF. The minimum variance
of vec(η̂γ̂) is described in the proof of Theorem 2 in Yoo (2015).

Theχ2 distribution and the asymptotic efficiency are optimal properties among the MDF. Cook
and Ni (2005) use the statisticnF̂opt

d to test H0 : d = m versus H1 : d > m, m = 0, . . . ,min(p, q)
for estimatingd. The applications of MDFs in various dimension reduction methods can be found in
Cook and Ni (2005), Cook and Zhang (2014), and Yoo and Cook (2007).

In practice,Γ̂−1 may be singular, and then the use of (1.3) can be problematic.Recently, Yoo
(2015) establishes theoretical results in such case. However, only one simulation example is pre-
sented in Yoo (2015), so intensive numerical studies and a real data example for the illustration pur-
pose should be necessary to show the practical usefulness ofthe results of Yoo (2015). This paper
investigates the asymptotic behaviors of Yoo (2015) based on various simulated models.

The organization of this article is as follows. In Section 2,the main results of Yoo (2015) are
briefly discussed with a focus on ordinary least square estimators (OLS). Intensive numerical studies
and a real data example are presented in Section 3, and Section 4 summarizes the work.

2. Review: optimal sufficient dimension reduction (SDR) wit h singularity

The OLS coefficient vectorβ ∈ R
p×r in the regression ofY ∈ R

r |X ∈ R
p is defined asβ =

Σ
−1 cov(X,Y), whereΣ = cov(X). Under certain conditions, the columns ofβ spanSY |X, that is,
S(β) = SY |X, soθ and θ̂ in Introduction are replaced withβ andβ̂, respectively. The conditions to
guarantee thatS(β) = SY |X will not be discussed here. For more about the conditions, two tutorial
papers of Yoo (2016a, 2016b) regarding SDR are recommended.SinceS(β) = SY |X, the relation that
β = ηγ is induced. Define thatε = Y−E(Y)−βT{X−E(X)}, which is the OLS residual matrix. Then,
according to Yoo and Cook (2007),

√
n{vec(β̂)−vec(β)} tends to normal distribution with mean 0 and

covarianceΓ:

Γ =
(

Ir ⊗ Σ−1/2
)

cov(TOLS)
(

Ir ⊗ Σ−1/2
)

,

whereTOLS ∈ Rpr = vec(ZεT) andZ = Σ−1/2(X − E(X)).
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To explain the results of Yoo (2015), it is necessary to definethe following Jacobian matrix∆β:

∆β =

{

∂ vec(BC)
∂ vec(B)

,
∂ vec(BC)
∂ vec(C)

}
∣

∣

∣

∣

∣

∣

(B=η,C=γ)

=
(

γT ⊗ Ip, Iq ⊗ η
)

.

Shapiro (1986) discusses thatV in equation (1.2) is required to be positive definite onS(∆β). This
is equivalently stated that rank(∆β) = rank(∆T

β
V∆β). Lemma A.3 in Cook and Ni (2005) allows us to

use a population quantityΓ, rather than its sample versionΓ̂, without any loss of generality.
With Γ singular with rankpq − k, the main results of Yoo (2015) need the following assumption:

rank(∆β) = rank(∆T
β
Γ
−
∆β).

According to Yoo (2015), the assumption is mild in practice,because the true dimensiond of SY |X
often turns out to be one or two in many SDR problems. Define that Γ− is a Moore-Penrose inverse
such thatΓ−ΓΓ− = Γ− andΓΓ−Γ = Γ.

Result 1. Assume that rank(∆θ) = rank(∆θΓ−∆θ). Let η̂∗ andγ∗ be the solutions to minimizing
FS

d (B,C) = {vec(β̂) − vec(BC)}TΓ−{vec(β̂) − vec(BC)}. Then, nF̂S∗
d = nFS

d (η̂∗, γ̂∗) ∼
χ2

(p−d)(q−d)−k asymptotically.

Result 2. Assume that rank(∆θ) = rank(∆θΓ−∆θ). DefineV = {V : S(V) = S(Γ)}. Then vec( ˆη∗γ̂∗)
has the minimum variance of vec(B̂Ĉ) from (1.2) with any inner-product matrix inV.

Since it is not always guaranteed thatS(V) = S(Γ), the asymptotic efficiency in Result 2 is more
restrictive than the asymptoticχ2 statistic in Result 1.

3. Numerical studies

3.1. Model configurations

If X have multi-collinearity,Γ can be singular. However, if so, the estimation ofSY |X through the OLS
is not desirable. Instead, the simulation models are set up for the responses to have high-correlation,
which also can induce the singularity ofΓ just like the example given in Yoo (2015). We consider the
following six models for numerical studies:

Model 1. (X1, . . . , X5) iid∼ N(0, 1) (ε1, . . . , ε4) iid∼ N(0, 1)

Y1 = X1 + ε1; Y2 = X1 + ε2; Y3 = X1 + ε3; Y4 = Y1 + sε4.

Model 2. (X1, . . . , X5) iid∼ N(0, 1) (ε1, . . . , ε4) iid∼ N(0, 1)

Y1 = exp(X1) + ε1; Y2 = exp(X1) + ε2 Y3 = exp(X1) + ε3; Y4 = Y1 + sε4.

Model 3. (X1, . . . , X5) iid∼ N(0, 1) (ε1, . . . , ε4) iid∼ t5

Y1 = X1 + ε1; Y2 = X1 + ε2 Y3 = X1 + ε3; Y4 = Y1 + sε4.

Model 4. (X1, . . . , X5) iid∼ N(0, 1) (ε1, . . . , ε4) iid∼ t5

Y1 = exp(X1) + ε1; Y2 = exp(X1) + ε2 Y3 = exp(X1) + ε3; Y4 = Y1 + sε4.

Model 5. (X1, . . . , X5) iid∼ t5 (ε1, . . . , ε4) iid∼ N(0, 1)

Y1 = X1(X1 + X2) + ε1; Y2 = exp(X1 + X2) + ε2 Y3 = exp(X2) + ε3; Y4 = Y1 + sε4.
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Model 6. (X1, . . . , X5) iid∼ t5 (ε1, . . . , ε4) iid∼ t5

Y1 = X1(X1 + X2) + ε1; Y2 = exp(X1 + X2) + ε2 Y3 = exp(X2) + ε3; Y4 = Y1 + sε4.

In all simulation models, two responses ofY1 andY4 have high-correlation depending on values of
s = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5. The structural dimensiond for Models 1–4 is equal to one, whose
central subspace is spanned by the column of (1, 0, 0, 0, 0)T, equivalentlyX1. However, for Models
5 and 6,SY |X is spanned by the two column of ((1, 0, 0, 0, 0)T, (0, 1, 0, 0, 0)T), equivalently (X1, X2),
sod is equal to two. The predictors for Models 1–4 are independently generated fromN(0, 1), while
those for Models 5–6 are randomly sampled fromt distribution with five degrees of freedom (t5).
For Models 1, 2, and 5 and Models 3, 4, and 6, the random errors are independently generated from
N(0, 1) andt5, respectively. Models 2 and 4 have non-linear mean structures, and Models 5 and 6
have a non-linear relationship between predictors and non-linear means together.

The reason to uset distribution is because of the need to investigate the asymptotic behaviors of
Yoo (2015) under thick-tailed distributions, which are more prone to outliers thanN(0, 1). Sample
sizesn are changed asn = 25, 50, 100, 200, and each simulation model is iterated 500 times.

The singularityk varies from 0 to (p− d)− 1 with increment by 1. The case ofk = 0 is equivalent
to the optimal SDR proposed by Yoo and Cook (2007). In the testof H0 : d = 0, the values ofk can
be 0, 1, 2, 3, . . . , (p − 1), while those are 0, 1, 2, . . . , (p − 2) for testing H0 : d = 1. Reasoning of not
using the values ofk larger than (p − d) − 1 is as follows.

In the simulation, ifY1 andY4 are highly correlated, it would be ideal thatη is estimated after
removing eitherY1 or Y4 or after replacingY1 andY4 by its linear combination such asYnew = (Y1 +

Y4)/2. The dimension is then reduced from four to three, and the degrees of freedom for the dimension
test of H0 : d = m is (p − m)((r − 1)− m). The differences in degrees of freedom between before and
after the removal is (p−m). Therefore, the use of the singularityk larger than (p−m)−1 intrinsically
induces the reduction of data, before starting the dimension reduction. So, such cases are ruled out. It
is recommended to use the guidelines to select the range ofk in practice.

3.2. Results

To summarize a basis estimation, the averages of|r| of a square root ofR2 from the OLS regression
of X1|η̂TX for Models 1–4 and the averages of|ri| from Xi|η̂TX, i = 1, 2, for Models 5 and 6 are
computed. If the true basis is well-estimated, the averagesof |r| should be close to one.

To measure how well the true dimensiond is estimated, for Models 1–4 and Models 5–6, the
percentages of the correct decisions thatd̂ = 1 andd̂ = 2 and the percentages of the decisions that
d̂ ≥ 2 andd̂ ≥ 3, which represents the observed levels, with level 5% are computed, respectively. If
the true dimension is well-estimated, the former and latterpercentages should be close to 95% and
5%, respectively.

First, we discuss the basis estimation results. Varyings with fixing n = 50, the averages are
reported in Figure 1. For Models 5 and 6, the averages of|r1| alone are reported because the averages
of |r2| are about the same as those of|r| for Models 1–4. According to Figure 1, for all simulation
models, there are no notable differences varying the values ofs; however, Yoo and Cook (2007)
show surprisingly poor performances. The minimum averagesof |r| is over 0.8 and better withn =
50. Summarizing these observations, Yoo (2015) is not a practical cause of concern for the basis
estimation.

Figures 2 and 3 summarized the dimension estimation for Model 1, which are the percentages of
the decision that̂d = 1 and the observed level, respectively. The figures represent the characteristic
behaviors observed in all the other simulation models withd = 1. Figures 4 and 5 present the summary
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Table 1: Dimension test in Minneapolis school data in Section 3.3

k = 0 k = 1 k = 2 k = 3 k = 4
H0 : d = 0 0.000 0.000 0.000 0.000 0.000
H0 : d = 1 0.027 0.061 0.294 0.279 N/A
H0 : d = 2 0.534 N/A N/A N/A N/A

of the dimension estimation for Models 5 and 6 withs = 0.01, 0.2, 0.5, because the results fors = 0.1,
0.3, 0.4 are similar. Figures 2–5 indicate that, for any values ofk under consideration, Yoo (2015)
shows better performance in both the correct decision percentages and the observed level than the
Yoo-Cook method. Especially, with a smaller sample size such asn = 25 andn = 50, there exist
notable differences between Yoo (2015) and the Yoo-Cook method in Models1–4. The small sample
behaviors are better with a larger value ofk. In addition, by the comparison between Model 5 and
Model 6 in Figures 4 and 5, the dimension estimation is impacted by the distribution of predictors
rather than that of errors, when a nonlinear relation exists. Figures 6 and 7 zoom Figures 2–5 at fixing
n = 50 for Models 1–6. According to the figures, the dimension estimation seems independent of on
the size ofs, rather than the choices ofk. In addition the distribution of predictors provide a greater
effect to the accuracy in the dimension estimation than those ofthe random errors. According to the
observation, Yoo (2015) can improve the Yoo-Cook method in the dimension estimation, andk = 1 is
recommended as the default value.

Summarizing the numerical studies, Yoo (2015) can have clear advantages over the existing Yoo-
Cook method.

3.3. Real data example: Minneapolis school data

For the illustration purpose of Yoo (2015), a dataset to measure the performance of students in Min-
neapolis schools (n = 63) are analyzed (Yoo, 2009). The dataset contains the percentagesP• of stu-
dents in a school scoring above (A) and below (B) average on standardized fourth and sixth grade read-
ing comprehension tests, which are used as the four dimensional responses,Y = (PA4, PB4, PA6, PB6)T.
Subtracting either pair of grade specific percentages from 100 gives the percentage of students scor-
ing about average on the test. The same five predictors used inYoo (2009) are considered: (1) the
pupil teacher ratio, (2) the square roots of the percentage of children receiving aid to families with
dependent children, (3) the percentage of children not living with both biological parents (B), (4) the
percentage of adults in the school area who completed high school, and (5) the percentage of per-
sons in the area below the federal poverty level. The transformation is done to induce the required
condition to estimateSY |X.

The methods by Yoo (2015) and Yoo and Cook (2007), equivalently Yoo (2015) withk = 0, are
applied to estimate the structural dimension. Table 1 reports thep-values used to test H0 : d = m,
m = 0, 1, 2. Table 1 indicates that, with level 5%, the Yoo-Cook methoddetermines that̂d = 2, while
Yoo (2015) withk = 1, 2, 3 concludes that̂d = 1. The sample correlation coefficients betweenPA4

andPB4 and betweenPA6 andPB6 are -0.7699 and -0.8331, respectively. This indicates thatPA4 and
PB4 and PA6 and PB6 have strong linear relationships. Also, according to numerical studies, with
smaller samples, Yoo (2015) with non-zerok is preferable tok = 0. Combining this, it would be more
desirable to decide that̂d = 1.

4. Conclusion

Optimal SDR is a paradigm to estimate the central subspace byminimizing the quadratic objective
functions with known initial estimates. Optimality meansχ2 dimension test and asymptotic efficiency.
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Figure 1: Averages of|r|s varyings with n = 50.
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Figure 2: Model 1: percentages of the decision thatd̂ = 1; red dashed-line, 95% reference.
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Figure 3: Model 1: observed levels; red dashed-line, 5% reference.
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Figure 4: Models 5 and 6: percentages of the decision thatd̂ = 2; red dashed-line, 95% reference.
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(c) s=0.2 for Model 5
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(d) s=0.2 for Model 6

k=0
k=1
k=2

50 100 150 200

0
20

40
60

80
10

0

Sample sizes

P
er

ce
nt

s 
of

 th
e 

de
ci

si
on

 th
at

 d
=

2

(e) s=0.5 for Model 5
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Figure 5: Models 5 and 6: observed levels; red dashed-line, 5% reference.
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(d) Model 4
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(e) Model 5
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Figure 6: Percentages of the decision thatd̂ = d varying s with n = 50; red dashed-line, 95% reference.
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(e) Model 5
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Figure 7: Observed levels varyings with n = 50; red dashed-line, 5% reference.
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According to Yoo and Cook (2007), the optimal sufficient dimension approach shows better estimation
results using the OLS to estimateSY |X. A possible problem arises, if the inner-product matrix in the
objective function is singular. Yoo (2015) derives theoretical results for the optimal SDR with a
singular inner-product matrix. However, Yoo (2015) lacks intensive numerical studies and a real data
example. Therefore, various simulated models and a real data analysis should be investigated to show
the practical usefulness of Yoo (2015).

In this paper, intensive numerical studies are done to show the potential advantages of Yoo (2015)
over existing Yoo and Cook (2007). Especially, in the dimension estimation, Yoo (2015) shows better
small sample results than Yoo and Cook (2007). A real data example also shows that the overestima-
tion of Yoo and Cook (2007) due to small sample sizes and high correlation between responses can
be prevented by using Yoo (2015). This confirms the practicalusefulness of Yoo (2015).
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