• Title/Summary/Keyword: dimension reduction method

Search Result 250, Processing Time 0.022 seconds

A Semi-supervised Dimension Reduction Method Using Ensemble Approach (앙상블 접근법을 이용한 반감독 차원 감소 방법)

  • Park, Cheong-Hee
    • The KIPS Transactions:PartD
    • /
    • v.19D no.2
    • /
    • pp.147-150
    • /
    • 2012
  • While LDA is a supervised dimension reduction method which finds projective directions to maximize separability between classes, the performance of LDA is severely degraded when the number of labeled data is small. Recently semi-supervised dimension reduction methods have been proposed which utilize abundant unlabeled data and overcome the shortage of labeled data. However, matrix computation usually used in statistical dimension reduction methods becomes hindrance to make the utilization of a large number of unlabeled data difficult, and moreover too much information from unlabeled data may not so helpful compared to the increase of its processing time. In order to solve these problems, we propose an ensemble approach for semi-supervised dimension reduction. Extensive experimental results in text classification demonstrates the effectiveness of the proposed method.

Overview of estimating the average treatment effect using dimension reduction methods (차원축소 방법을 이용한 평균처리효과 추정에 대한 개요)

  • Mijeong Kim
    • The Korean Journal of Applied Statistics
    • /
    • v.36 no.4
    • /
    • pp.323-335
    • /
    • 2023
  • In causal analysis of high dimensional data, it is important to reduce the dimension of covariates and transform them appropriately to control confounders that affect treatment and potential outcomes. The augmented inverse probability weighting (AIPW) method is mainly used for estimation of average treatment effect (ATE). AIPW estimator can be obtained by using estimated propensity score and outcome model. ATE estimator can be inconsistent or have large asymptotic variance when using estimated propensity score and outcome model obtained by parametric methods that includes all covariates, especially for high dimensional data. For this reason, an ATE estimation using an appropriate dimension reduction method and semiparametric model for high dimensional data is attracting attention. Semiparametric method or sparse sufficient dimensionality reduction method can be uesd for dimension reduction for the estimation of propensity score and outcome model. Recently, another method has been proposed that does not use propensity score and outcome regression. After reducing dimension of covariates, ATE estimation can be performed using matching. Among the studies on ATE estimation methods for high dimensional data, four recently proposed studies will be introduced, and how to interpret the estimated ATE will be discussed.

Improving Dimension Reduction Method Using Kriging Interpolation (Kriging 보간법을 사용한 개선된 차원감소법)

  • Choi, Joo-Ho;Choi, Chang-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.135-140
    • /
    • 2007
  • In this paper, an Improved Dimension Reduction(IDR) method is proposed for uncertainty quantification that employes Kriging interpolation technic. It has been acknowledged that the DR method is accurate and efficient for assessing statistical moments and reliability due to the sensitivity free feature. However, the DR method has a number of drawbacks such as instability and inaccuracy for problems with increased nonlineality. In this paper, improved DR is implanted by three steps. First, the Kriging interpolation method is used to accurately approximate the responses. Second, 2N+1 and 4N+1 ADOEs are proposed to maintain high accuracy of the method for UQ analysis. Third, numerical integration scheme is used with accurate but free response values at any set of integration points of the surrogated model.

  • PDF

Effect of Dimension in Optimal Dimension Reduction Estimation for Conditional Mean Multivariate Regression (다변량회귀 조건부 평균모형에 대한 최적 차원축소 방법에서 차원수가 결과에 미치는 영향)

  • Seo, Eun-Kyoung;Park, Chong-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.1
    • /
    • pp.107-115
    • /
    • 2012
  • Yoo and Cook (2007) developed an optimal sufficient dimension reduction methodology for the conditional mean in multivariate regression and it is known that their method is asymptotically optimal and its test statistic has a chi-squared distribution asymptotically under the null hypothesis. To check the effect of dimension used in estimation on regression coefficients and the explanatory power of the conditional mean model in multivariate regression, we applied their method to several simulated data sets with various dimensions. A small simulation study showed that it is quite helpful to search for an appropriate dimension for a given data set if we use the asymptotic test for the dimension as well as results from the estimation with several dimensions simultaneously.

Classification of Microarray Gene Expression Data by MultiBlock Dimension Reduction

  • Oh, Mi-Ra;Kim, Seo-Young;Kim, Kyung-Sook;Baek, Jang-Sun;Son, Young-Sook
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.3
    • /
    • pp.567-576
    • /
    • 2006
  • In this paper, we applied the multiblock dimension reduction methods to the classification of tumor based on microarray gene expressions data. This procedure involves clustering selected genes, multiblock dimension reduction and classification using linear discrimination analysis and quadratic discrimination analysis.

Input Dimension Reduction based on Continuous Word Vector for Deep Neural Network Language Model (Deep Neural Network 언어모델을 위한 Continuous Word Vector 기반의 입력 차원 감소)

  • Kim, Kwang-Ho;Lee, Donghyun;Lim, Minkyu;Kim, Ji-Hwan
    • Phonetics and Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.3-8
    • /
    • 2015
  • In this paper, we investigate an input dimension reduction method using continuous word vector in deep neural network language model. In the proposed method, continuous word vectors were generated by using Google's Word2Vec from a large training corpus to satisfy distributional hypothesis. 1-of-${\left|V\right|}$ coding discrete word vectors were replaced with their corresponding continuous word vectors. In our implementation, the input dimension was successfully reduced from 20,000 to 600 when a tri-gram language model is used with a vocabulary of 20,000 words. The total amount of time in training was reduced from 30 days to 14 days for Wall Street Journal training corpus (corpus length: 37M words).

Kriging Dimension Reduction Method for Reliability Analysis in Spring Design (스프링 설계문제의 신뢰도 해석을 위한 크리깅 기반 차원감소법의 활용)

  • Gang, Jin-Hyuk;An, Da-Wn;Won, Jun-Ho;Choi, Joo-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.422-427
    • /
    • 2008
  • This study is to illustrate the usefulness of Kriging Dimension Reduction Method(KDRM), which is to construct probability distribution of response function in the presence of the physical uncertainty of input variables. DRM has recently received increased attention due to its sensitivity-free nature and efficiency that considerable accuracy is obtained with only a few number of analyses. However, the DRM has a number of drawbacks such as instability and inaccuracy for functions with increased nonlinearity. As a remedy, Kriging interpolation technique is incorporated which is known as more accurate for nonlinear functions. The KDRM is applied and compared with MCS methods in a compression coil spring design problem. The effectiveness and accuracy of this method is verified.

  • PDF

Reliability Analysis Using Dimension Reduction Method with Variable Sampling Points (가변적인 샘플링을 이용한 차원 감소법에 의한 신뢰도 해석 기법)

  • Yook, Sun-Min;Min, Jun-Hong;Kim, Dong-Ho;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.870-877
    • /
    • 2009
  • This study provides how the Dimension Reduction (DR) method as an efficient technique for reliability analysis can acquire its increased efficiency when it is applied to highly nonlinear problems. In the highly nonlinear engineering systems, 4N+1 (N: number of random variables) sampling is generally recognized to be appropriate. However, there exists uncertainty concerning the standard for judgment of non-linearity of the system as well as possibility of diverse degrees of non-linearity according to each of the random variables. In this regard, this study judged the linearity individually on each random variable after 2N+1 sampling. If high non-linearity appeared, 2 additional sampling was administered on each random variable to apply the DR method. The applications of the proposed sampling to the examples produced the constant results with increased efficiency.

Action Recognition with deep network features and dimension reduction

  • Li, Lijun;Dai, Shuling
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.832-854
    • /
    • 2019
  • Action recognition has been studied in computer vision field for years. We present an effective approach to recognize actions using a dimension reduction method, which is applied as a crucial step to reduce the dimensionality of feature descriptors after extracting features. We propose to use sparse matrix and randomized kd-tree to modify it and then propose modified Local Fisher Discriminant Analysis (mLFDA) method which greatly reduces the required memory and accelerate the standard Local Fisher Discriminant Analysis. For feature encoding, we propose a useful encoding method called mix encoding which combines Fisher vector encoding and locality-constrained linear coding to get the final video representations. In order to add more meaningful features to the process of action recognition, the convolutional neural network is utilized and combined with mix encoding to produce the deep network feature. Experimental results show that our algorithm is a competitive method on KTH dataset, HMDB51 dataset and UCF101 dataset when combining all these methods.

Intensive numerical studies of optimal sufficient dimension reduction with singularity

  • Yoo, Jae Keun;Gwak, Da-Hae;Kim, Min-Sun
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.3
    • /
    • pp.303-315
    • /
    • 2017
  • Yoo (2015, Statistics and Probability Letters, 99, 109-113) derives theoretical results in an optimal sufficient dimension reduction with singular inner-product matrix. The results are promising, but Yoo (2015) only presents one simulation study. So, an evaluation of its practical usefulness is necessary based on numerical studies. This paper studies the asymptotic behaviors of Yoo (2015) through various simulation models and presents a real data example that focuses on ordinary least squares. Intensive numerical studies show that the $x^2$ test by Yoo (2015) outperforms the existing optimal sufficient dimension reduction method. The basis estimation by the former can be theoretically sub-optimal; however, there are no notable differences from that by the latter. This investigation confirms the practical usefulness of Yoo (2015).