• Title/Summary/Keyword: dimension lumber

Search Result 22, Processing Time 0.02 seconds

Feasibility of Domestic Yellow Poplar (Liriodendron tulipifera) Dimension Lumber for Structural Uses (국산 백합나무 구조용 제재목의 이용가능성 평가)

  • Lim, Jin-Ah;Oh, Jung-Kwon;Yeo, Hwan-Myeong;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.470-479
    • /
    • 2010
  • In this study, the visual grading based on the visual characteristics and structural timber bending test were conducted for domestic yellow poplar dimension lumber. Structural performance of domestic yellow poplar dimension lumber was conducted through the evaluation of strength and stiffness. Visual grading rule of yellow poplar dimension lumber did not exist in Korea. Visual grading of yellow poplar dimension lumber was performed according to the NSLB (Northern Softwood Lumber Bureau) standard grading rules including several hardwood dimension lumber. The allowable bending stress was calculated from the results of a visual grading. Compared with NDS (National Design Specification), the yellow poplar dimension lumber showed enough strength for structural uses. In addition, the visual grading was performed according to the KFRI (Korea Forest Research Institute) grading rule to calculated allowable bending stress and to evaluated the feasibility. The yellow poplar was classified into the pine groups by the KFRI criteria regulated by specific gravity. Allowable bending stress based on weibull distribution had became highly than KFRI criteria, as No. 1 (10.0 MPa), No. 2 (7.4 MPa) and No. 3 (4.1 MPa). And the availability of yellow poplar dimension lumber for structural uses had been confirmed. The Modulus of Elasticity (MOE) of domestic yellow poplar dimension lumber had not met the NDS and KFRI criteria. However, for the use of domestic yellow poplar, average values of MOE which obtained through this test were suggested as design value for domestic yellow poplar. Design values were supposed No. 1, 2 (9,000 MPa) and No. 3 (8,000 MPa).

High-temperature drying of Pinus densiflora and Pinus rigida dimension lumber (소나무와 리기다소나무 평소각재(平小角材)의 고온건조(高溫乾燥))

  • Park, Moon-Jae;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.53-66
    • /
    • 1987
  • Korean red pine (Pinus densiflora S. et. Z.) and pitch pine(Pinus rigida Mill) $5{\times}10cm$ dimension lumber were dried in a kiln providing a cross-circulation velocity of 5 m/sec at dry-and wet-bulb temperatures of 116 and $71^{\circ}C$, followed by 3 hours at 91 and $85^{\circ}C$. Compared to dimension lumber dried lumber were as follows. 1. To dry to 10 percent moisture content, the high-temperatures schedule of Korean red pine and pitch pine lumber took less than one seventh the time required by the conventional kiln drying schedule. 2. High-temperature drying rate and conventional drying rate to 10 percent moisture content of Korean red pine lumber were 2.75 and 0.35%/hr, and those of pitch pine lumber were 3.38 and 0.46%/hr respectively. 3. Compared to lumber of both species on conventional schedule, moisture gradient of high-temperature lumber was greater. 4. Compared to lumber on conventional schedule, maximum surface checking of high-temperature lumber of both species was severer, and maximum end checking of high-temperature lumber of both species was similar to that of lumber on conventional schedule. 5. Compard to lumber on conventional schedule, Korean red pine lumber dried at high temperature showed more honeycombing, but pitch pine lumber dried at high-temperature showed significantly slighter honeycombing. 6. Compared to lumber on conventional schedule, the high-temperature lumber showed less warping lumber of both species. 7. Collapse and casehardening of Korean red pine and pitch pine lumber on both scheules were slight.

  • PDF

Studies on Predicting the Kiln Drying Time and Moisture Content of Board and Dimension Lumber of Pinus densiflora using an Internal Moisture Diffusion Model of Softwood (침엽수재(針葉樹材)의 수분확산(水分擴散)모델을 이용(利用)한 소나무판재(板材)와 평소각재(平小角材)의 열기건조(熱氣乾燥) 시간(時間)과 함수율(含水率) 추정(推定)에 관(關)한 연구(硏究))

  • Lee, Sang-Bong;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.67-81
    • /
    • 1989
  • This experiment was carried out to know the mothod of changing the step of moisture content schedule with time in conventional kiln drying. For the purpose of this object. we made drying model by applying the moisture diffusion model by J.FSiau(1984) to average moisture content equation by J.Crank(1956) derived it from Fick's second law. And to verify this method of drying model. 2.5cm-thick boards and 5.0cm-thick dimension lumbers of Pinus densiflora were kiln-dried with the schedule of T11-C3 and T10-C4, respectively. And then the drying rates were investigated and compared with those calculated from drying model. The results obtained were as follows 1. Average drying rate and total drying time of board to dry to 6.5% moisture content were 0.64%/hr and 109hr., and those of dimension lumber to dry to 8.3% moisture content were 0.4%/hr. and 162hr., respectively. 2. The moisture content of shell and core decreased by equalizing treatment and increased by conditioning treatment both on board and dimension lumber. But the moisture gradient was lower after conditioning than after equalizing. 3. As the drying was proceeded, the transverse bound water diffusion coefficient all but linearly decreased, the water vapor diffusion coefficient abruptly curvilinearly increased, while the transverse diffusion coefficient curvilinearly decreased both on board and dimension lumber. But each of diffusion coefficients on board was larger than that on dimension lumber. 4. Compared to experimential drying rate of board. theoretical drying rate was larger at 30.0%-21.8% moisture content range and was similiar at 21.8%-5.4% moisture content. And in case of dimension lumber, the drying rate was similiar at 30.0%-16.1% moisture content range but theoretical drying rate was much lower at 16.1%-8.3% moisture content range. 5. The possibility of adapting this drying model to changing the moisture content schedule step with time was in the range of 21.8%-5.4% moisture content on board. And in the case of dimension lumber that was in the range of 30.0%-16.1% moisture content.

  • PDF

Experimental Study of Bending and Bearing Strength of Parallel Strand Lumber (PSL) from Japanese Larch Veneer Strand

  • OH, Seichang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.237-245
    • /
    • 2022
  • This study examined the structural performance of experimental parallel strand lumber (PSL) from a Larch veneer strand. The prototype of PSL from a Larch veneer strand was manufactured in the experimental laboratory and tested. The bending and dowel bearing strength were determined from the modulus of elasticity (MOE), modulus of rupture (MOR), and dowel bearing strength based on a 5% offset yield load. The test results indicated that the average MOR of PSL was higher than that of 2 × 4 dimension lumber, and the average MOE of PSL was lower than that of 2 × 4 dimension lumber. A linear relationship was observed between the MOR and MOE. The allowable bending stress of PSL was derived as specified in ASTM D2915 and compared with other research. The dowel bearing strength of PSL in parallel to the grain was approximately double that perpendicular to the grain of PSL. A comparison of several theoretical calculations based on each national code for the dowel bearing strength was conducted, and some theoretical equations produced results closer to the experimental results when it was parallel to the grain, but the difference was higher in the case perpendicular to the grain. The test results showed that PSL made with Japanese larch veneer strands appeared to be suitable for a raw material of structural composite lumber (SCL) appeared to be used as a raw material for SCL.

Temperature Effect on Ultrasonic Stress Wave Velocity of Wood (목재 초음파 전달속도에 대한 온도의 영향)

  • Kang, Ho-Yang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.50-55
    • /
    • 1999
  • Since ultrasonic stress wave velocity varies with wood temperature and moisture content, ultrasonic stress wave could be a tool to predict wood moisture content if temperature effect could be eliminated. This temperature effect was investigated by measuring the velocities of ultrasonic stress waves transmitting through air, a metal bar and a dimension lumber at various temperatures. For air the velocity and amplitude of the ultrasonic stress wave increase with temperature, while for a metal bar and a dimension lumber those decrease as temperature increases. However all three materials showed velocity hystereses with a temperature cycle. The effect of temperature and moisture content on stress wave velocity of a dimension lumber was depicted in the form of a three dimensional graph. The plot of stress wave velocity vs. wood moisture content was well fitted by two regression equations: a exponential equation below 46% and a linear equation above 46%.

  • PDF

Drying Resistance of Some Softwoods Lumbers under Time Schedule (시간스케쥴을 적용한 수종(數種)의 침엽수(針葉樹) 제재품(製材品)의 건조저항(乾燥抵抗))

  • Jung, Hee-Suk;Lee, Nam-Ho;Lee, June-Ho;Kwon, Ju-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.67-74
    • /
    • 1997
  • A relationship between drying resistance and moisture content was found for 24, 27 and 30mm thick boards, and 45, 51 and 57mm thick dimensions of Japanese larch. Dahurian larch and radiata pine in order to modify the kiln schedule by using time schedules. The amount of drying resistance for Dahurian larch lumber was the highest, and radiata pine lumber was the lowest, on the basis of the same moisture content range. Drying resistance increased curvilinearly as moisture content decreased, and was higher for thicker lumber than for thinner lumber, at a given moisture content. Combined drying resistance for the three board thicknesses and the three dimension thicknesses showed a comparatively strong for radiata pine and a Japanese larch, while a weak correlation for Dahurian larch as a function of two independent variables, thickness and moisture content of lumber, respectively.

  • PDF

Development of a Wood Recovery Estimation Model for the Tree Conversion Processes of Larix kaempferi (낙엽송 제재에 따른 이용재적 산출 모델의 개발)

  • Kwon, Kibeom;Han, Hee;Seol, Ara;Chung, Hyejean;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.4
    • /
    • pp.484-490
    • /
    • 2013
  • This study was conducted to develop a simulation model for estimating the amount of such products as round wood, dimension lumber and the residual wood biomass produced by processing the individual trees of Larix kaempferi. In the model, the stem volume is assessed using the taper equations of the species to estimate the stem forms. Then, the model simulates the conversion processes of logs to round wood or lumber and assesses the maximum amount of the wood products by the lumber dimensions or round wood size. Also the model provides information on the amount of residuals for kerf and slabs produced on the conversion processes for sawn timber or round wood. According to the results of an application of the model to a L. kaempferi process, the trees greater than 12 cm of DBH can be converted to logs for lumber or round wood production. For the trees, of which DBH is available for log conversion, the maximum amount of final products by dimensions were analyzed. In this analysis, production of the bigger dimension lumber was assumed to be preferred to that of the smaller or round wood. This model can be used for assesment of forest economic value through estimation of merchantable volume for the trees, and assessment of mill residues which has the potential to provide significant amount of feedstock for bioenergy production as well.

Estimation of Merchantable Volume and Yield Using A Stem Shape Simulation (수간부위 형상 시뮬레이션을 이용한 임목 이용재적 및 목재수율 추정)

  • Kwon, Soonduk;Kim, Hyungho;Chung, Joosang
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.3
    • /
    • pp.362-368
    • /
    • 2007
  • This study was conducted to estimate merchantable volume and yield per diameter (DBH) class of Pinus koraiensis and Larix kaempferi. Stem volume of trees in each diameter class was calculated using the existing equations for taper and height curve. Saw logs and pulpwood volume were then estimated from the stem volume in each diameter class. The final step was to estimate merchantable volume and yield from saw logs, assuming saw logs were used for lumber (boards or dimension products) production only. The results showed that the stem volume of Larix kaempferi was 23~38% higher than that of Pinus koraiensis at the same diameter classes. Both species were able to produce saw logs from the diameter class of 18 cm. Saw logs and pulpwood yield for both species rapidly increased due to the size limitation on small end diameter. This yield reached a maximum of 90% and 88% at 26 cm and 38cm diameter class, respectively, for Pinus koraiensis and Larix kaempferi. Lumber yield estimated for board products ranged from 23% to 56%. In the case of dimension products, Lumber yield became significantly smaller as saw logs were used for larger dimension products. These results can be used for calculating merchantable volume and economic value of trees, as well as determining final lumber products.

Structures and Competitiveness of Softwood Products in Korean Import Market (우리나라 수입(輸入) 침엽수재(針葉樹材) 시장구조(市場構造) 및 수종별(樹種別) 경쟁력(競爭力))

  • Kim, Wae-Jung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.34-42
    • /
    • 1991
  • Protection of tropical forest affects on significant reduce of tropical hardwood supply, and softwood resources will be increasingly important for the timber security in Korea. U.S. softwood log was most favorite species for Korean softwood log importers in overall import conditions except price stablization and consistency of export policy. Reduced export volume from Pacific Northwest to Korean market has been immediately replenished by rediata pine from New Zealand and Chilean plantation. Siberian timber will hardly play major roles in Korean timber market unless budding structure. softwood plywood and softwood furniture uses are enhanced. Recent rapid rise of labor cost and reducing tariff rrate in Korea provided better opportunities for import lumber in building materials market. Dry dimension lumber was relatively profitable when processed from import U.S. soft-wood log while green lumber was favorable products processed from radiata pine log in Korean lumber market. This means U.S. softwood lumber would have better opportunity to market for '2${\times}$'4 studs when wood frame housing is introduced. On the other hand while radiata pine is competitive on temporary construction lumber such as supporter and concrete forming frame in Korea. Shortage of raw material for the new capacity of board plants in Korea will be it bottle neck. Major log export countries to Korea as U.S. New Zealand and Chile showed high trade intensity indices of composite hoard produces for Korean market. As Korea efforts to diversify import sources, and tariffs are reduced to 8% as scheduled by 1994. countries of scoring higher comparative advantages as Portugal. Brazil, Austria as well as New Zealand will have better opportunity to penetrate into promised Korean composites hoard market.

  • PDF

Kiln Drying Schedule Modification for Pitch Pine Using Drying Resistance (리기다소나무의 건조저항(乾燥抵抗)을 이용한 건조(乾燥)스케쥴 개량(改良))

  • Lee, Kyung-Sub;Jung, Hee-Suk
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.69-78
    • /
    • 1988
  • For the modification of kiln drying schedule, rela ons between drying resistance R and moisture content or drying times were found 2.5cm-and 5.0cm-thick pitch pine (Pinus rigida Mill.) board and dimension lumber by the conventional kiln drying schedule until the average moisture content was 10%. The results of this study were as follows. 1. Drying resistance increased curvilinearly as moisture content decreased, and was higher for dimension lumber than for board at a given moisture content. The relationships between drying resistance and moisture content for the conventional kiln drying schedule and thickness of lumber were 1) $R_{2.5}=6.795\times10^3M^{-1.27^{**}}$ for 2.5cm-thick board by the conventional kiln drying schedule. 3) $R_{5.0}=5.206\times10^4M^{-1.55^{**}}$ for 5.0cm-thick dimension lumber by the conventional kiln drying schedule. 2. As drying time increased, moisture content decreased and drying resistance increased at the same time. Gradient of slope for dimension lumber was gentler than board. 3. The predicted drying times to 10% moisture content with the conventional kiln drying schedule were a little shorter than actual drying times with relatively small error. 4. It is necessary for the conventional kiln drying schedule to be modified to provide the desired final moisture content at minimum drying time with no significant degrade under severe drying conditions. 5. The kiln factors for 2.5cm-thick board and 5.0cm-thick dimension lumber with the conventional kiln drying schedule were 1.112, 1.136, respectively.

  • PDF