• Title/Summary/Keyword: diisocyanate

Search Result 309, Processing Time 0.019 seconds

Synthesis and Thermal Degradation of Poly(oxydiethylene adipate urethane) Composites Containing Cloisite 30B and Melamine Phosphate (Cloisite 30B와 멜라민포스페이트를 함유한 Poly(oxydiethylene adipate urethane) Composites의 합성과 열분해 특성)

  • Shin, Seung-Wook;Lee, Sang-Ho
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.643-650
    • /
    • 2012
  • In order to improve the thermal stability of polyurethane, we synthesized poly(adipate urethane) (PAU) and three PAU composites, PAU/30B (2.7 wt% 30B), PAU/MP (2.2 wt% MP), PAU/30B/MP (2.2 wt% 30B and 2.2 wt% MP), from poly(oxydiethylene adipate)-diol (PAD), 4,4'-methylene diphenyl diisocyanate (MDI), Cloisite 30B (30B), and melamine phosphate (MP). 30B and MP were introduced into the reactant mixture at the initial stage of the esterification between adipic acid and diethylene glycol, so 30B and MP were evenly dispersed in the PAU composites for long period. At temperatures lower than $250^{\circ}C$, the PAU composites were degraded faster than pristine PAU, mainly due to the decomposition of 30B and MP. At higher temperatures, the 30B and MP enhanced the thermal stability of the PAU composites. Compared with the pristine PAU, the thermal decomposition rates of the PAU composites decreased by 13~17%. In air, the residual weights of PAU/30B, PAU/MP, and PAU/30B/MP were 2.4, 2.3, and 7.3 wt% at $700^{\circ}C$, respectively.

Miscible Blend and Semi-IPN Gel of Poly(hydroxyethyl aspartamide) with Poly(N-vinyl pyrrolidone) (폴리아스팔트아미드와 폴리(비닐 피롤리돈)의 상용블렌드 및 Semi-IPN 젤 제조)

  • Meng, Fan;Jeon, Young-Sil;Chung, Dong-June;Kim, Ji-Heung
    • Polymer(Korea)
    • /
    • v.36 no.5
    • /
    • pp.617-621
    • /
    • 2012
  • PHEAs [${\alpha}$,${\beta}$-poly(2-hydroxyethyl-DL-aspartamides)], a class of poly(amino acid), have been widely studied as biodegradable and biocompatible polymers for potential biomedical and pharmaceutical applications. In this study, we investigated a homogeneous blend of PHEA with poly(N-vinyl pyrrolidone) (PNVP) and its semi-IPN (semi-interpenetrating polymer network) gels. Blend films were prepared by a solution casting method. The resulting blends were totally transparent over the whole composition ranges and the single $T_g$, changing monotonously with composition, was observed by DSC to confirm the miscibility between these two polymers. FTIR was used to discuss the possible hydrogen-bonding interaction between polymers. In addition, semi-IPN type gels were prepared by chemical crosslinking of PHEA/PNVP blend solution using hexamethylene diisocyanate (HMDI) as a crosslinking reagent. The prepared gel was characterized by their swelling property and morphology.

Synthesis of Polyurethanes Containing Poly(dimethyl siloxane) and Their Thermal and Shape Memory Properties (폴리디메틸실록산 성분을 포함하는 폴리우레탄의 합성과 이들의 열적 및 형상기억 특성)

  • Ra, Sang Hee;Kim, Young Ho
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.602-612
    • /
    • 2014
  • Polyurethanes containing poly(dimethyl siloxane) (PDMS) unit, PU-Si, were synthesized and their thermal and shape memory properties were investigated. Various amounts of PDMS units were incorporated via a solution polymerization method using mixed diols of poly(tetramethylene ether glycol) (PTMEG) and PDMS-diol as the soft segment (SS) and methylene diphenyl diisocyanate and 1,4-butanediol as the hard segment (HS). Two series of PU-Si samples with an HS content of 23% or 32% were prepared and analyzed. For PU-Si with an HS content of 23%, both the cold crystallization temperature ($T_{cc}$) and melt crystallization temperature of the SS domain moved higher temperature with increasing PDMS content, while the melting temperature ($T_m$) of the SS domain remained unaffected. The increase in HS content from 23% to 32% resulted in the increased $T_m$ and disappearance of $T_{cc}$. The shape recovery of PU-Si flim with an HS content of 32% increased while its shape retention decreased as PDMS content increased.

Fabrication of Poly(${\gamma}$-glutamic acid) Monolith by Thermally Induced Phase Separation and Its Application

  • Park, Sung-Bin;Fujimoto, Takashi;Mizohata, Eiichi;Inoue, Tsuyoshi;Sung, Moon-Hee;Uyama, Hiroshi
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.7
    • /
    • pp.942-952
    • /
    • 2013
  • Monoliths are functional porous materials with a three-dimensional continuous interconnected pore structure in a single piece. A monolith with uniform shape based on poly(${\gamma}$-glutamic acid) (PGA) has been prepared via a thermally induced phase separation technique using a mixture of dimethyl sulfoxide, water, and ethanol as solvent. The morphology of the obtained monolith was observed by scanning electron microscopy and the surface area of the monolith was evaluated by the Brunauer Emmett Teller method. The effects of fabrication parameters such as the concentration and molecular mass of PGA and the solvent composition have been systematically investigated. The PGA monolith was cross-linked with hexamethylene diisocyanate to produce the water-insoluble monolith. The addition of sodium chloride to the phase separation solvent affected the properties of the cross-linked monolith. The swelling ratio of the cross-linked monolith toward aqueous solutions depended on the buffer pH as well as the monolith fabrication condition. Copper(II) ion was efficiently adsorbed on the cross-linked PGA monolith, and the obtained copper-immobilized monolith showed strong antibacterial activity for Escherichia coli. By combination of the characteristic properties of PGA (e.g., high biocompatibility and biodegradability) and the unique features of monoliths (e.g., through-pore structure, large surface area, and high porosity with small pore size), the PGA monolith possesses large potentials for various industrial applications in the biomedical, environmental, analytical, and separation fields.

Study on Biodegradable Polyurethane Foam for Non-lethal Weapon (비 살상 무기 개발을 위한 생분해성 발포 폴리우레탄에 대한 연구)

  • Lee, Hyang Moo;Kim, Young Hyun;Kim, Kyung Won;Cheong, In Woo
    • Journal of Adhesion and Interface
    • /
    • v.17 no.1
    • /
    • pp.21-28
    • /
    • 2016
  • Foam-type biodegradable polyurethane adhesives were developed as a non-lethal weapon against illegal fishing boats. The adhesives were prepared from a hardener of polymeric methylene diphenyl diisocyanate (MDI) and a base composed of polyester and/or polyether polyols. In order to accelerate biodegradability, starch, dextrin, and amylase were added into the base, and which present about 34% degradability within 4 weeks confirmed by OECD 301C method. For proper mixing and corresponding prompt foam reaction, viscosities of hardener and base compositions were investigated in the temperature ranges from 0 to $50^{\circ}C$. For fast completion of the foam forming and corresponding adhesion, rising time was recorded in the same temperature range, and the rising time of the adhesive was varied within around 1 minute. T-peel adhesion tests with cotton fabrics were performed which showed 20.78 N/cm and 11.95 N/cm as the maximum and the average values, respectively.

Temperature-responsive bioactive hydrogels based on a multifunctional recombinant elastin-like polymer

  • Santo, Vitor E.;Prieto, Susana;Testera, Ana M.;Arias, Francisco J.;Alonso, Matilde;Mano, Joao F.;Rodriguez-Cabello, Jose Carlos
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.1
    • /
    • pp.47-59
    • /
    • 2015
  • A bioactive and multifunctional elastin-like polymer (ELP) was produced by genetic engineering techniques to develop new artificial matrices with the ability to mimic the extracellular matrix (ECM). The basic composition of this ELP is a thermo- and pH-sensitive elastin pentapeptide which has been enriched with RGD-containing domains, the RGD loop of fibronectin, for recognition by integrin receptors on their sequence to promote efficient cell attachment. Hydrogels of this RGD-containing polymer were obtained by crosslinking with hexamethylene diisocyanate, a lysine-targeted crosslinker. These materials retain the "smart" nature and temperature-responsive character, and the desired mechanical behavior of the elastin-like polymer family. The influence of the degree of crosslinking on the morphology and properties of the matrices were tested by calorimetric techniques and scanning electron microscopy (SEM). Their mechanical behavior was studied by dynamical mechanical analysis (DMA). These results show the potential of these materials in biomedical applications, especially in the development of smart systems for tissue engineering.

Synthesis and Properties of Linear and Crosslinkable Polyurethane Elastomers (선형과 가교형 수분산 폴리우레탄 엘라스토머의 합성 및 물성)

  • Choi, Sung-Ro;Lee, Su-Min;Kim, Hyun-Min
    • Elastomers and Composites
    • /
    • v.37 no.1
    • /
    • pp.39-48
    • /
    • 2002
  • Linear and crosslinked polyurethane dispersions were synthesized with 2,4-toluene diisocyanate, dimethylol propionic acid, polyoxypropylene glycol and polyoxypropylene glycerin. The structures of these polyurethanes were characterized by $^1H-NMR$ and FT-IR and the properties were measured with DSC, TGA, Instron and AFM etc. In case of linear polyurethane dispersion, the particle size, viscosity and glass transition temperature of polyurethanes increased with higher molecular weight of polyol and the degree of crosslinking. The crosslinked polyurethanes which contains more than 15% of polyoxypropyleneglycerin didn't from dispersion, when mixtures by polyoxypropyleneglycol and polyoxypropyleneglycerin were used as polyols. Thus, we synthesized crosslinked polyurethanes with 5%, 8%, 13% and 15% weight percents of polyoxypropylene glycerin as polyol mixtures.

Synthesis and Ozone Resistance Characteristic of Fluorine-containing modified Polyurea (불소계 변성 폴리우레아의 합성 및 오존저항 특성)

  • Kim, Sung Rae;Park, Ji Yong;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.175-180
    • /
    • 2016
  • The fluorine-containing modified polyurea was synthesized using the PTPE-diol to improve the ozone-resistance. Three types (PFDIA-10C, PFDIA-20C, PFDIA-30C) of the modified polyurea containing the fluorine content from 10 wt% to 30 wt% were prepared. After ozone treatment on the prepared films, the weight loss of film was investigated and analyzed the film properties such as hardness, wear resistance, tensile stress, elongation, etc. Also, the film surfaces were observed by the optical microscopy after ozone-resistance tests at 10 ppm for 336 h. It was shown that the defects such as the cracking, the bleaching and the mass loss were reduced and the ozone-resistance of films were improved when the contents of PFPE-diol are more than 20 wt%. It was found that the intensity of O-H peak in PFDIA compounds confirmed by FT-IR was decreased as fluorine contents were increasing.

Preparation and Properties of Biodegradable Hydrogels from Poly(2-hydroxyethyl aspartamide) and HMDI (HMDI 가교 폴리아스팔트아미드 수화젤의 제조 및 특성)

  • Kim Jeong Hoon;Sim Sang Jun;Lee Dong Hyun;Kim Dukjoon;Lee Youngkwan;Kim Ji-Heung
    • Polymer(Korea)
    • /
    • v.29 no.5
    • /
    • pp.518-521
    • /
    • 2005
  • Biodegradable polymers and hydrogels have been increasingly applied in a variety of biomedical applications including current drug delivery system and tissue engineering field. ${\alpha},\;{\beta}-Poly$(N-2-hydroxyethyl-DL-aspart-amide), PHEA. is one of poly(amino acids) with hydroxyethyl pendants, which is hewn to be biodegradable and potentially biocompatible. So that, the utilization and various chemical modifications of PHEA have been attempted for useful biomedical applications. In this wort chemical gels based on PHEA were prepared by crosslinking with diisocyanate compound in DMF in the presence of catalyst. Here, the PHEA was prepared from polysuccinimde, the thermal polycondensation product of aspartic acid, via ring-opening reaction with ethanolamine. The preparation of gels and their swelling behavior, depending on the different medium and pH, were investigated. Also the morphology by SEM and simple hydrolytic degradation were observed.

Effects of Physical Properties on Waterborne Polyurethane with Poly(tetramethylene glycol) (PTMG) and Polycaprolactone (PCL) Contents (폴리(테트라메틸렌 글리콜)(PTMG)/폴리카프로락톤)(PCL) 폴리올의 혼합비가 수분산계 폴리우레탄의 물성에 미치는 영향)

  • Yang, Yun-Kyu;Kwak, Noh-Seok;Hwang, Taek-Sung
    • Polymer(Korea)
    • /
    • v.29 no.1
    • /
    • pp.81-86
    • /
    • 2005
  • In this study, waterborne polyurethanes were synthesized with poly(tetramethylene glycol) (PTMG), polycarprolactone PCL), dimethylol propionic acid (DMPA) and different molar ratio of chain extender. Particle size, polydispersity, thermal and mechanical properties of waterborne polyurethane were investigated. The particle size of waterborne polyurethane was in the range of 5∼200 nm and decreased with increasing the amounts of PCL and chain extender. Glass transition temperatures ($T_g$) were in the range of -70∼-45 ${\circ}C$ and increased with as PCL and chian extender (ED) contents increased. The $T_g$ of polyurethane prepared from the mixture showed similar trends as compared with those of in the same values of synthetic polyurethane using PTMG or PCL, respectively. Also, mechanical properties of mixed polyols (PTMG and PCL) were lower than those of PTMG and PCL, respectively.