• Title/Summary/Keyword: digital receiver

Search Result 744, Processing Time 0.046 seconds

Array Manifold Measurement and Verification for UCA Calibration in Multistatic PCL System based on FM Broadcasting (FM 방송 기반 멀티스태틱 PCL 시스템 원형 배열 안테나 보정을 위한 Array Manifold 측정 및 검증)

  • Park, Junsik;Shim, Hongsuk;Ahn, Junil;Song, Kyuha
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.2
    • /
    • pp.165-174
    • /
    • 2021
  • This study describes a method of measurement and verification of array manifold of uniform circular array antenna applicable to multistatic Passive Coherent Location(PCL) system using FM broadcasting. In an environment of outdoor test where FM broadcast signals are scattered, array manifold measurement methods using network analyzer and multi-channel digital receiver are introduced. Also, the descriptions and solutions for the test limits of each measurement method and the considerations affecting the measurement accuracy are presented. In addition, to verify the validity of the measured array manifold, the gain and phase difference were compared with the array manifold data obtained by EM simulation, and the effectiveness and accuracy of the measured array manifolds were compared and analyzed by estimating the direction of arrival of the FM broadcast signal received from the multistatic PCL system.

Risk Factors for Sarcopenia, Sarcopenic Obesity, and Sarcopenia Without Obesity in Older Adults

  • Kim, Seo-hyun;Yi, Chung-hwi;Lim, Jin-seok
    • Physical Therapy Korea
    • /
    • v.28 no.3
    • /
    • pp.177-185
    • /
    • 2021
  • Background: Muscle undergoes change continuously with aging. Sarcopenia, in which muscle mass decrease with aging, is associated with various diseases, the risk of falling, and the deterioration of quality of life. Obesity and sarcopenia also have a synergy effect on the disease of the older adults. Objects: This study examined the risk factors for sarcopenia, sarcopenic obesity, and sarcopenia without obesity and developed prediction models. Methods: This machine-learning study used the 2008-2011 Korea National Health and Nutrition Examination Surveys in the analysis. After data curation, 5,563 older participants were selected, of whom 1,169 had sarcopenia, 538 had sarcopenic obesity, and 631 had sarcopenia without obesity; the remaining 4,394 were normal. Decision tree and random forest models were used to identify risk factors. Results: The risk factors for sarcopenia chosen by both methods were body mass index (BMI) and duration of moderate physical activity; those for sarcopenic obesity were sex, BMI, and duration of moderate physical activity; and those for sarcopenia without obesity were BMI and sex. The areas under the receiver operating characteristic curves of all prediction models exceeded 0.75. BMI could predict sarcopenia-related disease. Conclusion: Risk factors for sarcopenia-related diseases should be identified and programs for sarcopenia-related disease prevention should be developed. Data-mining research using population data should be conducted to enhance the effectiveness of early treatment for people with sarcopenia-related diseases through predictive models.

Detecting Anomalies, Sabotage, and Malicious Acts in a Cyber-physical System Using Fractal Dimension Based on Higuchi's Algorithm

  • Marwan Albahar
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.69-78
    • /
    • 2023
  • With the global rise of digital data, the uncontrolled quantity of data is susceptible to cyber warfare or cyber attacks. Therefore, it is necessary to improve cyber security systems. This research studies the behavior of malicious acts and uses Higuchi Fractal Dimension (HFD), which is a non-linear mathematical method to examine the intricacy of the behavior of these malicious acts and anomalies within the cyber physical system. The HFD algorithm was tested successfully using synthetic time series network data and validated on real-time network data, producing accurate results. It was found that the highest fractal dimension value was computed from the DoS attack time series data. Furthermore, the difference in the HFD values between the DoS attack data and the normal traffic data was the highest. The malicious network data and the non-malicious network data were successfully classified using the Receiver Operating Characteristics (ROC) method in conjunction with a scaling stationary index that helps to boost the ROC technique in classifying normal and malicious traffic. Hence, the suggested methodology may be utilized to rapidly detect the existence of abnormalities in traffic with the aim of further using other methods of cyber-attack detection.

Coherence Bandwidth and Coherence Time for the Communication Frame in the Underwater of East Sea (동해 천해환경에서 수중 통신 프레임 설계를 위한 상관 대역폭과 상관 시간의 산출)

  • Choi, Dong-Hyun;Kim, Hyeon-Su;Kim, Nam-Ri;Kim, Seong-Il;Chung, Jae-Hak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.29 no.6
    • /
    • pp.365-373
    • /
    • 2010
  • For effective underwater digital communications, a frame structure is used, which includes pilots in time and frequency domains for channel estimation at a receiver. To estimate channel precisely, the each pilot should be located less than coherence time and coherence bandwidth. This paper measured underwater communication environments to provide coherence time and coherence bandwidth. Based on the measurement, the paper exhibits the calculated coherence time and coherent bandwidth is adequate by computer simulations.

60 GHz CMOS SoC for Millimeter Wave WPAN Applications (차세대 밀리미터파 대역 WPAN용 60 GHz CMOS SoC)

  • Lee, Jae-Jin;Jung, Dong-Yun;Oh, Inn-Yeal;Park, Chul-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.670-680
    • /
    • 2010
  • A low power single-chip CMOS receiver for 60 GHz mobile application are proposed in this paper. The single-chip receiver consists of a 4-stage current re-use LNA with under 4 dB NF, Cgs compensating resistive mixer with -9.4 dB conversion gain, Ka-band low phase noise VCO with -113 dBc/Hz phase noise at 1 MHz offset from 26.89 GHz, high-suppression frequency doubler with -0.45 dB conversion gain, and 2-stage current re-use drive amplifier. The size of the fabricated receiver using a standard 0.13 ${\mu}m$ CMOS technology is 2.67 mm$\times$0.75 mm including probing pads. An RF bandwidth is 6.2 GHz, from 55 to 61.2 GHz and an LO tuning range is 7.14 GHz, from 48.45 GHz to 55.59 GHz. The If bandwidth is 5.25 GHz(4.75~10 GHz) The conversion gain and input P1 dB are -9.5 dB and -12.5 dBm, respectively, at RF frequency of 59 GHz. The proposed single-chip receiver describes very good noise performances and linearity with very low DC power consumption of only 21.9 mW.

Development of Digital Transceiver Unit for 5G Optical Repeater (5G 광중계기 구동을 위한 디지털 송수신 유닛 설계)

  • Min, Kyoung-Ok;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.25 no.1
    • /
    • pp.156-167
    • /
    • 2021
  • In this paper, we propose a digital transceiver unit design for in-building of 5G optical repeaters that extends the coverage of 5G mobile communication network services and connects to a stable wireless network in a building. The digital transceiver unit for driving the proposed 5G optical repeater is composed of 4 blocks: a signal processing unit, an RF transceiver unit, an optical input/output unit, and a clock generation unit. The signal processing unit plays an important role, such as a combination of a basic operation of the CPRI interface, a 4-channel antenna signal, and response to external control commands. It also transmits and receives high-quality IQ data through the JESD204B interface. CFR and DPD blocks operate to protect the power amplifier. The RF transmitter/receiver converts the RF signal received from the antenna to AD, is transmitted to the signal processing unit through the JESD204B interface, and DA converts the digital signal transmitted from the signal processing unit to the JESD204B interface and transmits the RF signal to the antenna. The optical input/output unit converts an electric signal into an optical signal and transmits it, and converts the optical signal into an electric signal and receives it. The clock generator suppresses jitter of the synchronous clock supplied from the CPRI interface of the optical input/output unit, and supplies a stable synchronous clock to the signal processing unit and the RF transceiver. Before CPRI connection, a local clock is supplied to operate in a CPRI connection ready state. XCZU9CG-2FFVC900I of Xilinx's MPSoC series was used to evaluate the accuracy of the digital transceiver unit for driving the 5G optical repeater proposed in this paper, and Vivado 2018.3 was used as the design tool. The 5G optical repeater digital transceiver unit proposed in this paper converts the 5G RF signal input to the ADC into digital and transmits it to the JIG through CPRI and outputs the downlink data signal received from the JIG through the CPRI to the DAC. And evaluated the performance. The experimental results showed that flatness, Return Loss, Channel Power, ACLR, EVM, Frequency Error, etc. exceeded the target set value.

Estimation of Fractional Frequency Offset for the Next-Generation Digital Broadcasting System (차세대 디지털 방송시스템을 위한 소수배 주파수 오프셋 추정)

  • Kim, Ho Jae;Kang, In-Woong;Seo, Jae Hyun;Kim, Heung Mook;Kim, Hyoung-Nam
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1364-1373
    • /
    • 2016
  • Ultra High Definition Television (UHDTV) has attracted much attention as one of next generation broadcasting services. For the commercialization of UHD broadcasting service, standardization groups including the DVB (Digital Video Broadcasting) and the ATSC (Advanced Television Systems Committee) have decided to adopt the Orthogonal Frequency Division Multiplexing (OFDM) for signal transmission. However, when the carrier frequency is not properly synchronized at the receiver, inter-symbol interference (ISI) and inter-carrier interference (ICI) may occur. In order to avoid performance degradation resulting from ISI or ICI, receivers should synchronize the carrier frequency by using preambles and pilot symbols. However, there only few published literature dealing with the frequency offset estimation methods regarding the next generation terrestrial broadcasting. In this respect, this paper proposes a method to estimate timing and fractional frequency offset for the ATSC 3.0 system by using a preamble bootstrap symbol. The proposed detector can detect the fractional frequency offset by adding a complex conjugate product on the conventional estimator where only timing offset can be estimated.

A Study of Development of Transmission Systems for Next-generation Terrestrial 4K UHD & HD Convergence Broadcasting (차세대 지상파 4K UHD & HD 융합방송을 위한 전송 시스템 개발에 관한 연구)

  • Oh, JongGyu;Won, YongJu;Lee, JinSub;Kim, YongHwan;Paik, JongHo;Kim, JoonTae
    • Journal of Broadcast Engineering
    • /
    • v.19 no.6
    • /
    • pp.767-788
    • /
    • 2014
  • The worldwide transition from analog to digital broadcasting has now been completed and the need to study next generation standards for Ultra High Definition TV (UHDTV) broadcasting, and broadcasting & communication convergence systems is rapidly growing. In particular, high resolution mobile broadcasting services are needed to satisfy recent consumers. Therefore, the development of highly efficient convergence broadcasting systems that provide fixed/mobile broadcasting through a single channel is needed. In this paper, a service scenario and requirements for providing 4K UHD & HD convergence broadcasting services through a terrestrial single channel are analyzed by employing the latest transmission and A/V codec technologies. Optimized transmission parameters for 6 MHz & 8 MHz terrestrial bandwidths are drawn, and receiving performances are measured under Additive White Gaussian Noise (AWGN) and time-varying multipath channels. From the results, in a 6 MHz bandwidth, the reliable receiving of HD layer data can be achieved when the receiver velocity is maximum 140 Km/h and is not achieved when the velocity is over 140 Km/h due to the limit of bandwidth. When the bandwidth is extended to 8 MHz, the reliable receiving of both 4K UHD and HD layer data is achieved under a very fast fading multipath channel.

ROC Analysis of Simulated Chest Lesions for Computed Radiography and Digital Radiography at Various Tube Voltages (다양한 관전압에 따른 CR과 DR 모의병변 흉부 영상의 ROC 평가)

  • Cho, Hyo-Min;Kim, Hee-Joung;Lee, Chang-Lae;Jung, Ji-Young;Park, Hye-Suk
    • Progress in Medical Physics
    • /
    • v.19 no.4
    • /
    • pp.298-304
    • /
    • 2008
  • Current digital radiographic systems are rapidly growing in clinical applications. The purpose of this study was to evaluate the diagnostic performance of computed radiography (CR) and digital radiography (DR) at different tube voltages in the detection of simulated chest lesions. Patterns of simulated interstitial lung disease, incipient infiltration, and nodules were superimposed over an anthropomorphic chest phantom. A simulated chest phantom radiograph was obtained with CR and DR at different tube voltages (70 kV, 90 kV, and 120 kV). A total of 18,000 observations were analyzed using a receiver operating characteristic (ROC) analysis. The detection of all lesions showed higher $A_z$ values at 70 kV than 120 kV with CR. For the DR, mean $A_z$ values at 70 kV were higher than other tube voltages not all lesions but for micro-nodule interstitial lung disease, linear interstitial lung disease, and incipient infiltration. Based on these results, a clinical study should be performed to judge the use of suitable tube voltage according to the type of detector system and lesions.

  • PDF

A Study on the Design of Digital Frequency Discriminator with 3-Channel Delay Lines (3채널 지연선을 가진 디지털주파수판별기의 설계에 관한 연구)

  • Kim, Seung-Woo;Choi, Jae-In;Chin, Hui-cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.44-52
    • /
    • 2017
  • In this paper, we propose a DFD (Digital Frequency Discriminator) design that has better frequency discrimination and a smaller size. Electronic warfare equipment can analyze different types of radar signal such as those based on Frequency, Pulse Width, Time Of Arrival, Pulse Amplitude, Angle Of Arrival and Modulation On Pulse. In order for electronic warfare equipment to analyze radar signals with a narrow pulse width (less than 100ns), they need to have a special receiver structure called IFM (Instantaneous Frequency Measurement). The DFD (Digital Frequency Discriminator) is usually used for the IFM. Because the existing DFDs are composed of separate circuit devices, they are bulky, heavy, and expensive. To remedy these shortcomings, we use a three delay line ($1{\lambda}$, $4{\lambda}$, $16{\lambda}$) in the DFD, instead of the four delay line ($1{\lambda}$, $4{\lambda}$, $16{\lambda}$, $64{\lambda}$) generally used in the existing DFDs, and apply the microwave integrated circuit method. To enhance the frequency discrimination, we detect the pulse amplitude and perform temperature correction. The proposed DFD has a frequency discrimination error of less than 1.5MHz, affording it better performance than imported DFDs.