• 제목/요약/키워드: digital intraoral scanner

Search Result 95, Processing Time 0.031 seconds

Accuracy of dental model based on the state-of-the-art manufacturing technique (첨단 제조기술 기반으로 제작된 치과용 모형의 정확도에 관한 연구)

  • Kim, Jae-Hong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.693-700
    • /
    • 2020
  • This study compared the accuracy and reliability of definitive casts fabricated from a digital impression and conventional impression technique. A master model with the prepared upper full-arch tooth was used. Samples of ten plaster models and ten polyurethane models were duplicated using a selected standard master model. Six linear measurements were recorded between the landmarks, directly on each of the stone models and the polyurethane models on two occasions by a double examiner. The Wilcoxon signed-rank test, interclass correlation coefficient (ICC), measurement error (MSE), and limit of agreement (LoA) were used for statistical analysis. The ICC ranged from 0.76 to 0.99 when comparing the stone models and polyurethane models. The mean difference between the stone models and polyurethane models ranged from 0.09mm to 0.20mm, suggesting that stone models might be slightly larger than polyurethane models. Based on this study, the accuracy of the polyurethane models in evaluating the performance of an oral scanner and subtractive technology was acceptable. Further studies will be needed on patient subjects under clinical conditions that may involve missing or malpositioned teeth and fixed dental prostheses because this study was limited to use a standard master model and duplicated sample models in a laboratory setting.

All-on-4 implant restoration with full-digital system preserving existing occlusion: A case report (완전 디지털 시스템으로 기존 교합을 보전한 All-on-4 임플란트 수복증례)

  • Kim, Kyoung Hee;Jeong, Seung-Mi;Lee, Ye Chan;An, Xue Yin;Choi, Byung-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.56 no.4
    • /
    • pp.330-337
    • /
    • 2018
  • In edentulous patients, implant - supported fixed prosthesis treatment has been proved to be useful, but involves complex treatment process. On the other hand, in the modern dentistry, digital technology has been developed day by day and it has expanded its range to the implant restoration of edentulous patients. In this case, a digital system was used for all stages of diagnosis, surgery, design and fabrication of provisional implants fixed prosthesis restoration in 66-year-old mandibular edentulous patients. In the preoperative diagnosis stage, a provisional restoration was designed based on the mucosal scan using the intraoral scanner and the stable occlusion of prefabricated complete denture of the patient. After flapless implant surgery using the surgical guide, the prefabricated interim restoration was connected to the implant and used as immediate provisional restoration. The final restoration was designed and fabricated by transferring the vertical dimension and the centric relation of the provisional restoration with stable occlusion using digital technology. We report a simple protocol of implant treatment in edentulous patients by using digital techniques to preserve the patient's vertical dimension and occlusion.

Clinical accuracy of impression technique using digital superimposition of customized abutment with subgingival margin: A case report (치은연하 변연을 가지는 맞춤형 지대주에서 디지털 중첩기술을 이용한 인상채득술의 임상 적용 증례)

  • Kim, Jin-Wan;Jeong, Chang-Mo;Yun, Mi-Jung;Lee, So-Hyoun;Lee, Hyeonjong;Huh, Jung-Bo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.58 no.2
    • /
    • pp.169-175
    • /
    • 2020
  • Traditionally, gingival retraction has been performed to obtain customized abutment impressions with subgingival margins of the implant supported prosthesis. However, gingival retraction may have side effects such as gingival recession and bleed, leading to an inaccurate impression. In order to prevent these problems, in this case, the new technique has been introduced; a customized abutment which is designed for superimposition is used. Before the connection of the abutment to the implant fixture, pre-scanned shape data are stored, and then the optical impression without gingival retraction is obtained after connecting to the fixture. The suprastructure is fabricated by superimposing the two data. This technique showed the clinical efficacy of fabricating the implant supported prosthesis with subgingival margin, which satisfied the aesthetics, convenience, and clinically acceptable marginal and internal fit.

Accuracy of provisional crowns made using stereolithography apparatus and subtractive technique

  • Kang, Seen-Young;Park, Jung-Hyun;Kim, Ji-Hwan;Kim, Woong-Chul
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.5
    • /
    • pp.354-360
    • /
    • 2018
  • PURPOSE. To compare and analyze trueness and precision of provisional crowns made using stereolithography apparatus and subtractive technology. MATERIALS AND METHODS. Digital impressions were made using a master model and an intraoral scanner and the crowns were designed with CAD software; in total, 22 crowns were produced. After superimposing CAD design data and scan data using a 3D program, quantitative and qualitative data were obtained for analysis of trueness and precision. Statistical analysis was performed using normality test combined with Levene test for equal variance analysis and independent sample t-test. Type 1 error was set at 0.05. RESULTS. Trueness for the outer and inner surfaces of the SLA crown (SLAC) were $49.6{\pm}9.3{\mu}m$ and $22.5{\pm}5.1{\mu}m$, respectively, and those of the subtractive crown (SUBC) were $31.8{\pm}7.5{\mu}m$ and $14.6{\pm}1.2{\mu}m$, respectively. Precision values for the outer and inner surfaces of the SLAC were $18.7{\pm}6.2{\mu}m$ and $26.9{\pm}8.5{\mu}m$, and those of the SUBC were $25.4{\pm}3.1{\mu}m$ and $13.8{\pm}0.6{\mu}m$, respectively. Trueness values for the outer and inner surfaces of the SLAC and SUBC showed statistically significant differences (P<.001). Precision for the inner surface showed significance (P<.03), whereas that for the outer surface showed no significance (P<.58). CONCLUSION. The study demonstrates that provisional crowns produced by subtractive technology are superior to crowns fabricated by stereolithography in terms of accuracy.

Influence of preparation design on fracture resistance of different monolithic zirconia crowns: A comparative study

  • Findakly, Meelad Basil;Jasim, Haider Hasan
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.6
    • /
    • pp.324-330
    • /
    • 2019
  • PURPOSE. The aim of the study was to evaluate and compare the fracture resistance and modes of fracture of monolithic zirconia crowns with two preparation designs. MATERIALS AND METHODS. Forty human maxillary first premolar teeth were extracted for orthodontic purposes and divided into two main groups (n=20): Group A: monolithic traditional zirconia; Group B: monolithic translucent zirconia. The groups were further subdivided into two subgroups (n=10): (A1, B1) shoulder margin design; (A2, B2) feather-edge margin design. Teeth were prepared with either a 1 mm shoulder margin design or a feather-edge margin design. The prepared teeth were scanned using a digital intraoral scanner. The crowns were cemented using self-adhesive resin cement. All cemented teeth were stored in water for 7 days and thermocycling was done before testing. All samples were subjected to compressive axial loading until fracture. The fractographic analysis was done to assess the modes of fracture of the tested samples. RESULTS. The highest mean values of fracture resistance were recorded in kilo-newton and were in the order of subgroup A1 (2.903); subgroup A2 (2.3); subgroup B1 (1.854) and subgroup B2 (1.523). One-way ANOVA showed a statistically significant difference among the 4 subgroups. Concerning modes of fracture, the majority of samples in subgroups A1 and B1 were fracture of restoration and/or tooth, while in subgroups A2 and B2, the majority of samples fractured through the central fossa. CONCLUSION. Even though all the tested crowns fractured at a higher level than the maximum occlusal forces, the shoulder margin design was better than the feather-edge margin design and the monolithic traditional zirconia was better than the monolithic translucent zirconia in terms of fracture strength.

In vivo wear determination of novel CAD/CAM ceramic crowns by using 3D alignment

  • Aladag, Akin;Oguz, Didem;Comlekoglu, Muharrem Erhan;Akan, Ender
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.120-127
    • /
    • 2019
  • PURPOSE. To determine wear amount of single molar crowns, made from four different restoratives, and opposing natural teeth through computerized fabrication techniques using 3D image alignment. MATERIALS AND METHODS. A total of 24 single crowns (N = 24 patients, age range: 18 - 50) were made from lithium disilicate (IPS E-max CAD), lithium silicate and zirconia based (Vita Suprinity CAD), resin matrix ceramic material (Cerasmart, GC), and dual matrix (Vita Enamic CAD) blocks. After digital impressions (Cerec 3D Bluecam, DentsplySirona), the crowns were designed and manufactured (Cerec 3, DentsplySirona). A dualcuring resin cement was used for cementation (Variolink Esthetic DC, Ivoclar). Then, measurement and recording of crowns and the opposing enamel surfaces with the intraoral scanner were made as well as at the third and sixth month follow-ups. All measurements were superimposed with a software (David-Laserscanner, V3.10.4). Volume loss due to wear was calculated from baseline to follow-up periods with Siemens Unigraphics NX 10 software. Statistical analysis was accomplished by Repeated Measures for ANOVA (SPSS 21) at = .05 significance level. RESULTS. After 6 months, insignificant differences of the glass matrix and resin matrix materials for restoration/enamel wear were observed (P>.05). While there were no significant differences between the glass matrix groups (P>.05), significant differences between the resin matrix group materials (P<.05) were obtained. Although Cerasmart and Enamic were both resin matrix based, they exhibited different wear characteristics. CONCLUSION. Glass matrix materials showed less wear both on their own and opposing enamel surfaces than resin matrix ceramic materials.

Evaluation of accuracy of 3-dimensional printed dental models in reproducing intermaxillary relational measurements: Based on inter-operator differences

  • Choi, Won-joon;Lee, Su-jung;Moon, Cheol-Hyun
    • The korean journal of orthodontics
    • /
    • v.52 no.1
    • /
    • pp.20-28
    • /
    • 2022
  • Objective: Although, digital models have recently been used in orthodontic clinics, physical models are still needed for a multitude of reasons. The purpose of this study was to assess whether the printed models can replace the plaster models by evaluating their accuracy in reproducing intermaxillary relationships and by appraising the clinicians' ability to measure the printed models. Methods: Twenty sets of patients' plaster models with well-established occlusal relationships were selected. Models were scanned using an intraoral scanner (Trios 3, 3Shape Dental System) by a single operator. Printed models were made with ZMD-1000B light-curing resin using the stereolithography method 3-dimensional printer. Validity, reliability, and reproducibility were evaluated using measurements obtained by three operators. Results: In evaluation of validity, all items showed no significant differences between measurements taken from plaster and printed models. In evaluation for reliability, significant differences were found in the distance between the gingival zeniths of #23-#33 (DZL_3) for the plaster models and at #17-#43 (DZCM_1) for the printed models. In evaluation for reproducibility, the plaster models showed significant differences between operators at midline, and printed models showed significant differences at 7 measurements including #17-#47 (DZR_7). Conclusions: The validity and reliability of intermaxillary relationships as determined by the printed model were clinically acceptable, but the evaluation of reproducibility revealed significant inter-operator differences. To use printed models as substitutes for plaster models, additional studies on their accuracies in measuring intermaxillary relationship are required.

Digital immediate implantation and aesthetic immediate loading on maxillary incisor displaced due to root fracture: a case report (치근파절로 변위된 상악 중절치의 디지털을 이용한 즉시 임플란트 식립 및 심미 수복 증례)

  • Jieun Song;Songyi Park;Chan Park;Kwidug Yun;Hyun-Pil Lim;Sangwon Park
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.39 no.4
    • /
    • pp.267-275
    • /
    • 2023
  • To obtain better esthetic results when immediately placing a dental implant, the soft tissue surrounding the implant must be conditioned during healing of the extraction socket. To this end, the emergence profile can be customized through immediate restoration of the provisional prosthesis, and good clinical results can be obtained at the time of definitive restoration in the future, resulting in high patient satisfaction. In this case, horizontal root fracture occurred after trauma to both maxillary central incisors. Immediate implant placement and loading was planned considering aesthetics and alveolar bone condition. By taking an impression using a digital intraoral scanner, a digital diagnostic wax-up was performed to make a more aesthetic prosthesis without applying external force to the traumatized teeth. Based on this, the ideal placement location was determined and immediate implant placement was performed using a 3D printed surgical guide. The provisional prosthesis was restored 5 days after placement, and the definitive zirconia crown was restored through soft tissue conditioning and customization using the shape of the provisional prosthesis for 3 months.

Evaluation of Bone Change by Digital Subtraction Radiography after Implantation of Tooth Ash-plaster Mixture (치아회분과 석고혼합제제 매식후 Digital Subtraction Radiography에 의한 골량 변화의 평가)

  • Kim Jae-Duk;Kim Kwang-Won;Cho Yaung-Gon;Kim Dong-Kie;Choi Eui-Hwan
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.2
    • /
    • pp.423-433
    • /
    • 1999
  • Purpose : To assess the methods for the clinical evaluation of the longitudinal bone changes after implantation of tooth ash-plaster mixture into the defect area of human jaws. Materials and methods : Tooth ash-plaster mixtures were implanted into the defects of 8 human jaws. 48 intraoral radiograms taken with copper step wedge as reference at soon, 1st, 2nd, 4th, and 6th week after implantation of mixture were used. X-ray taking was standardized by using Rinn XCP device customized directly to the individual dentition with resin bite block. The images inputted by Quick scanner were digitized and analyzed by NIH image program. Cu­equivalent values were measured at the implanted sites from the periodic digital images. Analysis was performed by the bidirectional subtraction with color enhancement and the surface plot of resliced contiguous image. The obtained results by the two methods were compared with Cu­equivalent value changes. Results : The average determination coefficient of Cu-equivalent equations was 0.9988 and the coefficient of variation of measured Cu values ranged from 0.08~0.10. The coefficient of variation of Cu-equivalent values measured at the areas of the mixture and the bone by the conversion equation ranged from 0.06 ~0.09. The analyzed results by the bidirectional subtraction with color enhancement were coincident with the changes of Cu-equivalent values. The surface plot of the resliced contiguous image showed the three dimensional view of the longitudinal bone changes on one image and also coincident with Cu-equivalent value changes after implantation. Conclusion : The bidirectional subtraction with color enhancement and the surface plot of the resliced contiguous image was very effective and reasonable to analyze clinically and qualitatively the longitudinal bone change. These methods are expected to be applicable to the non-destructive test in other fields.

  • PDF

An Assessment on Cu-Equivalent Image of Digital Intraoral Radiography (디지털구내방사선사진의 구리당량화상에 대한 평가)

  • KIM JAE-DUK
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.29 no.1
    • /
    • pp.33-42
    • /
    • 1999
  • Geometrically standardized dental radiographs were taken. We prepared Digital Cu-Equivalent Image Analyzing System for quantitative assessment of mandible bone. Images of radiographs were digitized by means of Quick scanner and personal Mcquintosh computer. NIH image as software was used for analyzing images. A stepwedge composed of 10 steps of 0.1mm copper foil in thickness was used for reference material. This study evaluated the effects of step numbers of copper wedge adopted for calculating equation. kVp and exposure time on the coefficient of determination(r²)of the equation for conversion to Cu-equivalent image and the coefficient of variation and Cu-Eq value(mm) measured at each copper step and alveolar bone of the mandible. The results were as follows: 1. The coefficients of determination(r²) of 10 conversion equations ranged from 0.9996 to 0.9973(mean=0.9988) under 70kVp and 0.16 sec. exposure. The equation showed the highest r was Y=4.75614612-0.06300524x +0.00032367x² -0.00000060x³. 2. The value of r² became lower when the equation was calculated from the copper stepwedge including 1.0mm step. In case of including 0mm step for calculation. the value of r showed variability. 3. The coefficient of variation showed 0.11, 0.20 respectively at each copper step of 0.2, 0.1mm in thickness. Those of the other steps to 0.9 mm ranged from 0.06 to 0.09 in mean value. 4. The mean Cu-Eq value of alveolar bone was 0.14±0.02mm under optimal exposure. The values were lower than the mean under the exposures over 0.20sec. in 60kVp and over 0.16sec. in 70kVp. 5. Under the exposure condition of 60kVp 0.16sec.. the coefficient of variation showed 0.03. 0.05 respectively at each copper-step of 0.3, 0.2mm in thickness. The value of r² showed over 0.9991 from both 9 and 10 steps of copper. The Cu-Eq value and the coefficient of variation was 0.14±0.01mm and 0.07 at alveolar bone respectively. In summary. A clinical application of this system seemed to be useful for assessment of quantitative assessment of alveolar provided high coefficient of determination is obtained by the modified adoption of copper step numbers and the low coefficient of variation for the range of Cu-Equivalent value of alveolar bone from optimal kVp and exposure time for each x-ray machine.

  • PDF