An Assessment on Cu-Equivalent Image of Digital Intraoral Radiography

디지털구내방사선사진의 구리당량화상에 대한 평가

  • KIM JAE-DUK (Dept. of Oral and Maxillofacial Radiology, School of Dentistry, Chosun University)
  • 김재덕 (조선대학교 치과대학 구강악안면방사선학교실)
  • Published : 1999.02.01

Abstract

Geometrically standardized dental radiographs were taken. We prepared Digital Cu-Equivalent Image Analyzing System for quantitative assessment of mandible bone. Images of radiographs were digitized by means of Quick scanner and personal Mcquintosh computer. NIH image as software was used for analyzing images. A stepwedge composed of 10 steps of 0.1mm copper foil in thickness was used for reference material. This study evaluated the effects of step numbers of copper wedge adopted for calculating equation. kVp and exposure time on the coefficient of determination(r²)of the equation for conversion to Cu-equivalent image and the coefficient of variation and Cu-Eq value(mm) measured at each copper step and alveolar bone of the mandible. The results were as follows: 1. The coefficients of determination(r²) of 10 conversion equations ranged from 0.9996 to 0.9973(mean=0.9988) under 70kVp and 0.16 sec. exposure. The equation showed the highest r was Y=4.75614612-0.06300524x +0.00032367x² -0.00000060x³. 2. The value of r² became lower when the equation was calculated from the copper stepwedge including 1.0mm step. In case of including 0mm step for calculation. the value of r showed variability. 3. The coefficient of variation showed 0.11, 0.20 respectively at each copper step of 0.2, 0.1mm in thickness. Those of the other steps to 0.9 mm ranged from 0.06 to 0.09 in mean value. 4. The mean Cu-Eq value of alveolar bone was 0.14±0.02mm under optimal exposure. The values were lower than the mean under the exposures over 0.20sec. in 60kVp and over 0.16sec. in 70kVp. 5. Under the exposure condition of 60kVp 0.16sec.. the coefficient of variation showed 0.03. 0.05 respectively at each copper-step of 0.3, 0.2mm in thickness. The value of r² showed over 0.9991 from both 9 and 10 steps of copper. The Cu-Eq value and the coefficient of variation was 0.14±0.01mm and 0.07 at alveolar bone respectively. In summary. A clinical application of this system seemed to be useful for assessment of quantitative assessment of alveolar provided high coefficient of determination is obtained by the modified adoption of copper step numbers and the low coefficient of variation for the range of Cu-Equivalent value of alveolar bone from optimal kVp and exposure time for each x-ray machine.

Keywords