• Title/Summary/Keyword: digital homotopy equivalence

Search Result 5, Processing Time 0.02 seconds

REMARKS ON DIGITAL HOMOTOPY EQUIVALENCE

  • Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.29 no.1
    • /
    • pp.101-118
    • /
    • 2007
  • The notions of digital k-homotopy equivalence and digital ($k_0,k_1$)-homotopy equivalence were developed in [13, 16]. By the use of the digital k-homotopy equivalence, we can investigate digital k-homotopy equivalent properties of Cartesian products constructed by the minimal simple closed 4- and 8-curves in $\mathbf{Z}^2$.

KD-(k0, k1)-HOMOTOPY EQUIVALENCE AND ITS APPLICATIONS

  • Han, Sang-Eon
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.1031-1054
    • /
    • 2010
  • Let $\mathbb{Z}^n$ be the Cartesian product of the set of integers $\mathbb{Z}$ and let ($\mathbb{Z}$, T) and ($\mathbb{Z}^n$, $T^n$) be the Khalimsky line topology on $\mathbb{Z}$ and the Khalimsky product topology on $\mathbb{Z}^n$, respectively. Then for a set $X\;{\subset}\;\mathbb{Z}^n$, consider the subspace (X, $T^n_X$) induced from ($\mathbb{Z}^n$, $T^n$). Considering a k-adjacency on (X, $T^n_X$), we call it a (computer topological) space with k-adjacency and use the notation (X, k, $T^n_X$) := $X_{n,k}$. In this paper we introduce the notions of KD-($k_0$, $k_1$)-homotopy equivalence and KD-k-deformation retract and investigate a classification of (computer topological) spaces $X_{n,k}$ in terms of a KD-($k_0$, $k_1$)-homotopy equivalence.

REMARKS ON SIMPLY k-CONNECTIVITY AND k-DEFORMATION RETRACT IN DIGITAL TOPOLOGY

  • Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.36 no.3
    • /
    • pp.519-530
    • /
    • 2014
  • To study a deformation of a digital space from the viewpoint of digital homotopy theory, we have often used the notions of a weak k-deformation retract [20] and a strong k-deformation retract [10, 12, 13]. Thus the papers [10, 12, 13, 16] firstly developed the notion of a strong k-deformation retract which can play an important role in studying a homotopic thinning of a digital space. Besides, the paper [3] deals with a k-deformation retract and its homotopic property related to a digital fundamental group. Thus, as a survey article, comparing among a k-deformation retract in [3], a strong k-deformation retract in [10, 12, 13], a weak deformation k-retract in [20] and a digital k-homotopy equivalence [5, 24], we observe some relationships among them from the viewpoint of digital homotopy theory. Furthermore, the present paper deals with some parts of the preprint [10] which were not published in a journal (see Proposition 3.1). Finally, the present paper corrects Boxer's paper [3] as follows: even though the paper [3] referred to the notion of a digital homotopy equivalence (or a same k-homotopy type) which is a special kind of a k-deformation retract, we need to point out that the notion was already developed in [5] instead of [3] and further corrects the proof of Theorem 4.5 of Boxer's paper [3] (see the proof of Theorem 4.1 in the present paper). While the paper [4] refers some properties of a deck transformation group (or an automorphism group) of digital covering space without any citation, the study was early done by Han in his paper (see the paper [14]).

STRONG k-DEFORMATION RETRACT AND ITS APPLICATIONS

  • Han, Sang-Eon
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1479-1503
    • /
    • 2007
  • In this paper, we study a strong k-deformation retract derived from a relative k-homotopy and investigate its properties in relation to both a k-homotopic thinning and the k-fundamental group. Moreover, we show that the k-fundamental group of a wedge product of closed k-curves not k-contractible is a free group by the use of some properties of both a strong k-deformation retract and a digital covering. Finally, we write an algorithm for calculating the k-fundamental group of a dosed k-curve by the use of a k-homotopic thinning.

COMMUTATIVE MONOID OF THE SET OF k-ISOMORPHISM CLASSES OF SIMPLE CLOSED k-SURFACES IN Z3

  • Han, Sang-Eon
    • Honam Mathematical Journal
    • /
    • v.32 no.1
    • /
    • pp.141-155
    • /
    • 2010
  • In this paper we prove that with some hypothesis the set of k-isomorphism classes of simple closed k-surfaces in ${\mathbf{Z}}^3$ forms a commutative monoid with an operation derived from a digital connected sum, k ${\in}$ {18,26}. Besides, with some hypothesis the set of k-homotopy equivalence classes of closed k-surfaces in ${\mathbf{Z}}^3$ is also proved to be a commutative monoid with the above operation, k ${\in}$ {18,26}.