COMMUTATIVE MONOID OF THE SET OF k-ISOMORPHISM CLASSES OF SIMPLE CLOSED k-SURFACES IN \mathbf{Z}^3

SANG-EON HAN

Abstract. In this paper we prove that with some hypothesis the set of k-isomorphism classes of simple closed k-surfaces in \mathbb{Z}^3 forms a commutative monoid with an operation derived from a digital connected sum, $k \in \{18, 26\}$. Besides, with some hypothesis the set of k-homotopy equivalence classes of closed k-surfaces in \mathbb{Z}^3 is also proved to be a commutative monoid with the above operation, $k \in \{18, 26\}$.

1. Introduction

In order to study some properties of the set of k-isomorphism classes of simple closed k-surfaces in \mathbb{Z}^3 , we need to recall some notions, as follows. In algebra, a monoid is defined to be a set X with a binary operation $*: X \times X \to X$, obeying the following axioms:

- (X,*) has the associative law,
- there is an element $e \in X$ such that for any element $x \in X$ x * e = e * x = x and further,
- if x * y = y * x for any elements $x, y \in X$, then we say that (X, *) is a commutative monoid.

Let **N** and **Z** be the sets of natural numbers and integers, respectively. Let \mathbf{Z}^n be the set of lattice points in Euclidean n-dimensional space, $n \in \mathbf{N}$. In [27] a closed k-surface was studied in \mathbf{Z}^3 , $k \in \{6, 26\}$ and in [1] a closed 18-surface was introduced in \mathbf{Z}^3 . Besides, the study of

Received December 22, 2009. Accepted February 16, 2010. 2000 MSC: 57M05, 55P10, 57M10.

Keywords: digital k-graph, digital k-surface, (k_0, k_1) -isomorphism, digital connected sum, k-homotopy equivalence, k-contractibility, simple closed k-surface, (commutative) monoid.

various properties of a closed k-surface in \mathbb{Z}^3 and digital space includes the papers [1, 9, 10, 14, 25].

The connected sum in geometric topology cannot be available in discrete (or digital) geometry. Thus we need its digital version to study a digital k-surface. Motivated by the notion of connected sum in geometric topology, its digital version was established in [9] (see also [7, 14]). Thus, the notion of digital connected sum of two simple closed k-surfaces was introduced and further, its digital topological properties were partially studied [9, 15]. In [5] a geometric realization of a digital space $X \subset \mathbb{Z}^3$ has been introduced. Moreover, in [15] the Euler characteristic of a digital space was studied in relation with a digital connected sum in [9] (see also [15]). In [14] two types of simple, closed 18-surfaces in \mathbb{Z}^3 were introduced. One is 18-contractible, denoted by MSS'_{18} (see 3.1) and the other is not 18-contractible, denoted by MSS'_{18} (see 3.1). Especially, MSS'_{18} plays an important role in establishing the monoid structure of the set of k-isomorphism classes of simple closed k-surfaces in \mathbb{Z}^3 .

In this paper we prove that with some hypothesis the set of k-isomorphism classes of simple closed k-surfaces in \mathbb{Z}^3 forms a commutative monoid with an operation derived from a digital connected sum in [9], $k \in \{18, 26\}$. Besides, we prove that both MSS'_{18} and MSS_{18} are 26-surfaces and further, MSS'_{18} is proved 26-contractible. Moreover, k-contractibility of MSS'_k allows us to establish a commutative monoid of the set of k-isomorphism classes of simple closed k-surfaces with an operation derived from a digital connected sum, $k \in \{18, 26\}$. In other words, the k-isomorphism class of MSS'_k , denoted by $[MSS'_k]$, is proved to be the identity element for the above-mentioned monoid, $k \in \{18, 26\}$. Similarly, with some hypothesis we also form another commutative monoid of the set of k-homotopy classes of closed k-surfaces in \mathbb{Z}^3 , $k \in \{18, 26\}$. This kinds of two monoids of the sets of k-isomorphism classes of simple closed k-surfaces in \mathbb{Z}^3 and k-homotopy equivalence classes of closed k-surfaces can be used in classifying simple closed k-surfaces in \mathbb{Z}^3

This paper is organized as follows. Section 2 provides basic notions. Section 3 investigates some properties of a closed k-surface and a relative k-homotopy, $k \in \{18, 26\}$. Section 4 establishes a commutative monoid of the set of k-isomorphism classes of closed k-surfaces with an operation derived from a digital connected sum, $k \in \{18, 26\}$. Section 5 shows that with some hypothesis the set of k-homotopy equivalence classes of closed k-surfaces with an operation forms a commutative monoid, $k \in \{18, 26\}$.

2. Preliminaries

In order to make this paper self-contained, we recall some necessary terminology from earlier literature in [1, 3, 25, 28]. Since a closed k-surface in \mathbb{Z}^3 can be studied with a digital k-graph structure in \mathbb{Z}^3 , we now use the k(m,n) (or k_m)-adjacency relations of \mathbb{Z}^n , $n \in \mathbb{N}$ [8] (see also [12]):

Let m be a positive integer with $1 \leq m \leq n$. Then we say that two distinct points $p = (p_1, p_2, \dots, p_n)$ and $q = (q_1, q_2, \dots, q_n) \in \mathbf{Z}^n$ are k(m, n)-adjacent according to m if

- (1) there are at most m distinct indices i such that $|p_i q_i| = 1$; and
- (2) for all indices i such that $|p_i q_i| \neq 1, p_i = q_i$.

In terms of this operator the number m determines one of the k(m, n)adjacency relations of \mathbf{Z}^n , we may use k := k(m, n). Precisely, by $N_k^*(p)$ we denote the set of the points $q \in \mathbf{Z}^n$ which are k_m -adjacent to a given
point p and the number k := k(m, n) is the cardinal number of $N_k^*(p)$.
Consequently, we obtain the following k-adjacency relations of \mathbf{Z}^n [8]
(see also [9, 15]).

Proposition 2.1. [19]
$$k := k(m,n) = \sum_{i=n-m}^{n-1} 2^{n-i} C_i^n$$
, where $C_i^n = \frac{n!}{(n-i)! \ i!}$.

In general, for a subset $X \subset \mathbf{Z}^n$ with k-adjacency, $n \in \mathbf{N}$, we call it a digital space with k-adjacency, denoted by (X,k), and further, (X,k) is usually considered in a digital picture $(\mathbf{Z}^n,k,\bar{k},X)$ [27, 28], k and \bar{k} are related to the adjacencies of X and $\mathbf{Z}^n - X$, respectively. In this paper, we assume $(k,\bar{k}) \in \{(k,2n),(2n,3^n-1)\}$. Hereafter, we call briefly (X,k) a space if not confused. Owing to the digital k-connectivity paradox in [26], we commonly assume that $k \neq \bar{k}$ except for the case $(\mathbf{Z},2,2,X)$. For $a,b \in \mathbf{Z}$ with $a \leq b$, the set $[a,b]_{\mathbf{Z}} = \{n \in \mathbf{Z} | a \leq n \leq b\}$ is called a digital interval [3].

A digital space (X, k) is a digital graph G_k [13] (see also [15, 16, 18]). To be specific, the vertex set of G_k can be considered as the set of points of X. Besides, two points $x_1, x_2 \in X$ determine a k-edge of G_k if and only if x_1 and x_2 are k-adjacent in X.

A k-path from x to y in X is a sequence $(x = x_0, x_1, x_2, \dots, x_{m-1}, x_m = y)$ in X such that each point x_i is k-adjacent to x_{i+1} for $m \ge 1$ and $i \in [0, m-1]_{\mathbf{Z}}$. Then, the number m is called the *length* of this path [26]. If $x_0 = x_m$, then the k-path is said to be *closed* [26]. A set of lattice points is k-connected if it is not a union of two disjoint non-empty sets

that are not k-adjacent to each other [25]. Thus a singleton set with k-adjacency is k-connected. For a digital space (X,k), two distinct points $x,y\in X$ are k-connected [22] if there is a k-path from x to y in X. For an adjacency relation k of \mathbf{Z}^n , a simple k-path with m elements in \mathbf{Z}^n is assumed to be a sequence $(x_i)_{i\in[0,m-1]_{\mathbf{Z}}}\subset\mathbf{Z}^n$ such that x_i and x_j are k-adjacent if and only if either j=i+1 or i=j+1 [25]. Furthermore, a simple closed k-curve with l elements in \mathbf{Z}^n is a sequence $(x_i)_{i\in[0,l-1]_{\mathbf{Z}}}$ derived from a simple k-curve $(x_i)_{i\in[0,l]_{\mathbf{Z}}}$ with $x_0=x_l$, where x_i and x_j are k-adjacent if and only if $j=i+1 \pmod{l}$ or $i=j+1 \pmod{l}$ [25]. By $SC_k^{n,l}$ we denote a simple closed k-curve with l elements in \mathbf{Z}^n , $n \in \mathbf{N} - \{1\}$ [12].

Motivated by both the digital continuity of [28] and the (k_0, k_1) -continuity of [2], we say that a function $f: X \to Y$ is (k_0, k_1) -continuous at a point $x_0 \in X$.

Let (X, k_0) and (Y, k_1) be spaces in \mathbb{Z}^{n_0} and \mathbb{Z}^{n_1} , respectively. A function $f: X \to Y$ is (k_0, k_1) -continuous at a point $x_0 \in X$ if and only if $f(N_{k_0}(x_0, 1)) \subset N_{k_1}(f(x_0), 1)$, where $N_{k_0}(x_0, 1) \subset X$ and $N_{k_1}(f(x_0), 1) \subset Y$.

Unlike the pasting property of classical continuity in topology, the (k_0, k_1) -continuity has some intrinsic features [24]: (k_0, k_1) -continuity has the almost pasting property instead of the pasting property of classical topology.

For a k-adjacency relation of \mathbb{Z}^n , we recall that a simple closed k-curve with l elements in $X \subset \mathbb{Z}^n$ is the image of a (2, k)-continuous function $f: [0, l-1]_{\mathbb{Z}} \to X$ such that f(i) and f(j) are k-adjacent if and only if either $j = i + 1 \pmod{l}$ or $i = j + 1 \pmod{l}$ [26]. Thus, we may use the notation $SC_k^{n,l} := (c_i)_{i \in [0,l-1]_{\mathbb{Z}}}$ with $f(i) = c_i$ [12].

Recently, digital graph versions of (k_0, k_1) -continuity, (k_0, k_1) -homeomorphism, (k_0, k_1) -covering, and (k_0, k_1) -homotopy in digital topology were established in [13]. Consequently, we may use the term a (k_0, k_1) -isomorphism as in [4, 13] rather than a (k_0, k_1) -homeomorphism as in [3]:

Definition 1. [13] (see also [4]) For two spaces (X, k_0) in \mathbb{Z}^{n_0} and (Y, k_1) in \mathbb{Z}^{n_1} , a map $h: X \to Y$ is called a (k_0, k_1) -isomorphism if h is a (k_0, k_1) -continuous bijection and further, $h^{-1}: Y \to X$ is (k_1, k_0) -continuous. Then, we use the notation $X \approx_{(k_0, k_1)} Y$. If $n_0 = n_1$ and $k_0 = k_1$, then we call it a k_0 -isomorphism and use the notation $X \approx_{k_0} Y$ or $X \approx Y$ if not confused.

3. Some properties of a simple closed k-surface in \mathbb{Z}^3 , $k \in \{18, 26\}$

For a space (X, k) and its subset A, we call ((X, A), k) a digital space pair with k-adjacency. Furthermore, if A is a singleton set $\{x_0\}$, then (X, x_0) is called a pointed space [3]. Motivated by the k-homotopy of [3], the homotopy relative to a subset $A \subset X$ was established in [9] and has been used in studying digital spaces in relation with a strong k-deformation retract, a k-homotopic thinning [10] (see also [16]), and a k-contractibility [17]. As special case of the (k_0, k_1) -homotopy in [3], we use the following k-homotopy in this paper.

Definition 2. [9] (see also [16]) Let (X, k) and (Y, k) be spaces in \mathbb{Z}^n , and $A \subset X$. Let $f, g: X \to Y$ be (k, k) (briefly, k)-continuous functions. Suppose the existence of both $m \in \mathbb{N}$ and a function $F: X \times [0, m]_{\mathbb{Z}} \to Y$ such that

- for all $x \in X$, F(x, 0) = f(x) and F(x, m) = g(x);
- for all $x \in X$, the induced function $F_x : [0, m]_{\mathbf{Z}} \to Y$ defined by $F_x(t) = F(x, t)$ is (2, k)-continuous for all $t \in [0, m]_{\mathbf{Z}}$;
- for all $t \in [0, m]_{\mathbf{Z}}$, the induced function $F_t : X \to Y$ defined by $F_t(x) = F(x, t)$ is k-continuous for all $x \in X$.

Then, F is called a k-homotopy between f and g, and f and g are k-homotopic in Y.

• Furthermore, for all $t \in [0, m]_{\mathbf{Z}}$, then suppose the induced map F_t on A is a constant which is the prescribed function from A to Y. In other words, $F_t(x) = f(x) = g(x)$ for all $x \in A$ and for all $t \in [0, m]_{\mathbf{Z}}$.

Then, we call F a k-homotopy relative to A between f and g, and we say that f and g are k-homotopic relative to A in Y denoted by $f \simeq_{k\text{-rel}.A} g$.

In Definition 2, if $A = \{x_0\} \subset X$, then we say that F is a pointed k-homotopy at $\{x_0\}$ in [3].

Definition 3. [3] If, for some $x_0 \in X$, 1_X is k-homotopic to the constant map with space x_0 relative to $\{x_0\}$, then we say that (X, x_0) is pointed k-contractible.

Indeed, the notion of k-contractibility is slightly different from both the contractibility in Euclidean topology [3, 12] and the contractibility of [3].

In classical topology, the notions of *interior* and *exterior* have been essentially used in studying a topological space. By analogy, we obtain the following from the view point of digital topology.

Definition 4. [9] Let $c^* = (x_0, x_1, \dots, x_n)$ be a closed k-curve in \mathbb{Z}^2 . Let \bar{c}^* be the complement of c^* in \mathbb{Z}^2 . A point x of \bar{c}^* is said to be interior to c^* if it belongs to the bounded \bar{k} -connected component of \bar{c}^* . Otherwise, it is called exterior to c^* . The set of all interior(respectively exterior) points to c^* is denoted by $Int(c^*)$ (respectively $Ext(c^*)$).

We now recall the terminology for the study of a digital k-surface in \mathbf{Z}^3 . A point $x \in X \subset \mathbf{Z}^3$ is called a k-corner if x is k-adjacent to two and only two points $y, z \in X$ such that y and z are k-adjacent to each other [1]. The k-corner x is called simple if y and z are not k-corners and if x is the only point k-adjacent to both y, z. X is called a generalized simple closed k-curve if what is obtained by removing all simple k-corners of X is a simple closed k-curve [1]. For a k-connected space (X, k) in \mathbf{Z}^3 , we recall $|X|^x = N_{26}^*(x) \cap X$, $N_{26}^*(x) = \{x'|x \text{ and } x' \text{ are 26-adjacent}\}$. In other words, $|X|^x = N_{26}(x, 1) - \{x\}$ [9, 10, 14].

By using the above terminology, the notion of closed k-surface was introduced:

Definition 5. [1] Let (X, k) be a space in \mathbb{Z}^3 , and $\bar{X} = \mathbb{Z}^3 - X$. Then, X is called a closed k-surface if it satisfies the following:

- (1) In case $(k, \bar{k}) \in \{(26, 6), (6, 26)\}$, then
- (a) for each point $x \in X$, $|X|^x$ has exactly one k-component k-adjacent to x;
- (b) $|\bar{X}|^x$ has exactly two \bar{k} -components which are \bar{k} -adjacent to x; we denote by C^{xx} and D^{xx} these two components; and
- (c) for any point $y \in N_k(x) \cap X$, $N_{\bar{k}}(y) \cap C^{x\,x} \neq \emptyset$ and $N_{\bar{k}}(y) \cap D^{x\,x} \neq \emptyset$, where $N_k(x) = N_k^*(x) \cup \{x\}$ and $N_k^*(x) = \{x' | x \text{ and } x' \text{ are } k \text{adjacent}\}.$
- (2) In case $(k, \bar{k}) = (18, 6)$, then
- (a) X is k-connected,
- (b) for each point $x \in X$, $|X|^x$ is a generalized simple closed k-curve.
- In (1) and (2), for $k \in \{18, 26\}$ if the image $|X|^x$ is a simple closed k-curve, then X is called simple.

Obviously, we observe that each closed 6-surface is simple (see MSS_6 in Figure 1). Furthermore, in this paper we will not consider the *orientability* of a closed k-surface in [27].

The paper [14] establishes the following:

$$\begin{cases}
MSS_{18} \approx_{18} (MSC_8 \times \{1\}) \cup (\text{Int}(MSC_8) \times \{0, 2\}); \\
MSS'_{18} \approx_{18} (MSC'_8 \times \{1\}) \cup (\text{Int}(MSC'_8) \times \{0, 2\}),
\end{cases}$$
(3.1)

where 'x' means the Cartesian product (or digital product) and $MSC_8 := ((0,0), (1,-1), (2,-1), (3,0), (2,1), (1,1))$ and, $MSC'_8 := ((0,0), (1,1), (0,2), (-1,1))$.

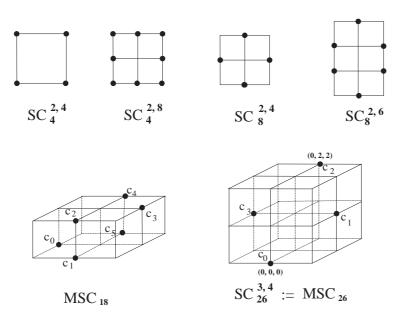


FIGURE 1. Simple closed 6-, 18-, and 26-surfaces from [9, 14, 15] with (6, 26)-and (k, 6)-structures, $k \in \{18, 26\}$

Remark 3.1. The space MSS'_{18} in (3.1) can be represented as the set $\{(\pm 1, 0, 0), (0, \pm 1, 0), (0, 0, \pm 1)\}$ in $(\mathbf{Z}^3, 18, 6, MSS'_{18})$.

In [14], it turns out that MSS_{18} is a simple closed 18-surface not 18-contractible (see Figure 1) and further, MSS'_{18} is a simple closed 18-surface which is 18-contractible. In this paper each of MSS_{18} and MSC'_{18} is considered with an (18,6) or a (26,6)-structure instead of the others in [6].

Both 18-surfaces MSS_{18} and MSS_{18}^{\prime} have some useful properties, as follows.

Lemma 3.2. (1) MSS_k is unique up to k-isomorphism, $k \in \{18, 26\}$.

- (2) MSS_{18} is also a simple closed 26-surface not 26-contractible.
- (3) MSS'_{18} is also a simple closed 26-surface which is 26-contractible.

Proof: (1) Trivial.

- (2) Since MSS_{18} is obviously a simple closed 26-surface with a (26, 6)-structure and further, there is no 26-homotopy on MSS_{18} making $1_{MSS_{18}}$ 26-homotopic to a constant map $c_{\{p_i\}}$, where p_i is an arbitrary point in MSS_{18} . Thus, MSS_{18} cannot be 26-homotopy equivalent to a singleton in MSS_{18} , the proof is completed.
- (3) MSS'_{18} is obviously a simple closed 26-surface with a (26,6)-structure. Furthermore, MSS'_{18} is 26-contractible due to the 18-contract-

ibility of MSS'_{18} in [14].

Hereafter, by Lemma 3.2, we may use MSS_{18} and MSS'_{18} as MSS_{26} and MSS'_{26} , respectively. Namely, we may use $MSS_{18} := MSS_{26}$ and $MSS'_{18} := MSS'_{26}$ in this paper.

4. Commutative monoid of the set of k-isomorphism classes of simple closed k-surfaces in \mathbb{Z}^3

In relation with the establishment of a digital version of a connected sum, we have used the following spaces

 $MSC_8'':=MSC_8'\cup\{q\}$ and $MSC_8^*:=MSC_8\cup\{x_1,x_2\}$, come from MSC_8' and MSC_8 in \mathbf{Z}^2 [9, 14]. MSC_8'' has been used in establishing a digital connected sum. In this section we denote by SC_k the set of all simple closed k-surface $X\subset\mathbf{Z}^3$ in which each point $x\in X$ has a subset $N_k(x,1)\subset X$ satisfying $N_k(x,1)\approx_{(k,8)}MSC_8''$, $k\in\{18,26\}$.

In addition, we obtain the following:

- (1) $MSC_8'^* := MSC_8' \cup Int(MSC_8'),$ where $MSC_8' \approx \{w_0 = (0, 0), w_1 = (-1, 1), w_2 = (-2, 0), w_3 = (-1, 1), w_4 = (-2, 0), w_5 = (-1, 1), w_6 = (-2, 0), w_7 = (-1, 1), w_8 = (-2, 0), w_8 w_8 = (-2$
- where $MSC_8' \approx_8 \{w_0 = (0,0), w_1 = (-1,1), w_2 = (-2,0), w_3 = (-1,-1)\}.$ (2) $MSC_8^* := MSC_8 \cup Int(MSC_8) \approx_{(8,4)} N_4(p,1) \subset \mathbf{Z}^2, p \in \mathbf{Z}^2,$ where $MSC_8 \approx_8 \{c_0 = (0,0), c_1 = (1,1), c_2 = (1,2), c_3 = (0,3), c_4 = (-1,2),$ $c_5 = (-1,1)\}.$

Since a simple closed k-surface in SC_k has a subset $A \subset X$ satisfying $A \approx_{(k,8)} MSC_8''$, $k \in \{18,26\}$, hereafter, we may take a subset $A \approx_{(k,8)} MSC_8''$ for the digital connected sum of Definition 6 below. Thus we can establish a commutative monoid structure of the set of k-isomorphism classes of simple closed k-surfaces in SC_k with an operation derived from the digital connected sum, $k \in \{18,26\}$. As a special case of the digital connected sum in [9], we introduce the following which is suitable for an establishment of a monoid of the set of k-isomorphism classes of simple closed k-surfaces in SC_k .

Definition 6. Let X and Y be simple closed k-surfaces in $SC_k, k \in \{18, 26\}$. Consider $A' \subset A \subset X$ and take $A - A' \subset X$, where $A \approx_{(k,8)} MSC_8'^*$ and $A' \approx_{(k,8)} Int(MSC_8')$. Let $f: A \to f(A) \subset Y$ be a k-isomorphism. Remove A' and f(A') from X and Y, respectively. Then, the disjoint union of X' and Y' induced from the identification x with $f(x) \in Y'$ for all $x \in A - A'$ is taken, denoted by $X \sharp Y$, where X' = X - A', Y' = Y - f(A') and any two points $p \in X' \subset X \sharp Y$ and $q \in Y' \subset X \sharp Y$ with $p, q \notin X \sharp Y - f(A - A')$ are not 26-adjacent in $X \sharp Y$.

Remark 4.1. In relation with the conditions (a) and (b) of (1), and (b) of (2) in Definition 5, we need the statement that any two points $p \in X' \subset X \sharp Y$ and $q \in Y' \subset X \sharp Y$ with $p, q \notin X \sharp Y - f(A - A')$ are not 26-adjacent in $X \sharp Y$ of Definition 6.

In order to show that a digital connected sum is essentially used in establishing a monoid structure of the set of k-isomorphism classes of simple closed k-surfaces in SC_k , $k \in \{18, 26\}$, we use the following:

Example 4.2. (1) $MSS_{26} \sharp MSS'_{26} \approx_{26} MSS_{26}$. (2) $MSS'_{26} \sharp MSS'_{26} \approx_{26} MSS'_{26}$.

Proof: (1) We can consider $MSS_{26}\sharp MSS'_{26}$ with 26-adjacency in $(\mathbf{Z}^3, 26, 6, MSS_{26}\sharp MSS'_{26})$ so that $MSS_{26}\sharp MSS'_{26} \approx_{26} MSS_{26}$ [9]. Precisely, take two subsets, $\{p_0, p_1, p_9, p_5, p_7\} := A \subset MSS_{26}$ (see Figure 1) and $\{c_0, c_1, c_2, c_3, c_4\} := B \subset MSS'_{26}$ (see Figure 1) which are 26-isomorphic to each other. Then, consider a 26-isomorphism $f: A \to B$ such that

$$f(p_0) = c_0, f(p_1) = c_1, f(p_9) = c_2, f(p_5) = c_3, f(p_7) = c_4$$

and remove the two points $p_0 \in MSS_{26}$ and $c_0 = f(p_0) \in MSS'_{26}$. Gluing the two remaining sets $MSS_{26} - \{p_0\}$ and $MSS'_{26} - \{c_0\}$, we obtain $MSS_{26} \sharp MSS'_{26}$ by using the map f so that $MSS_{26} \sharp MSS'_{26}$ is still 26-isomorphic to the space MSS_{26} .

By the same method as above, we obtain $MSS_{18} \sharp MSS'_{18} \approx_{18} MSS_{18}$ is also established with 18-adjacency in $(\mathbf{Z}^3, 18, 6, MSS_{18} \sharp MSS'_{18})$.

(2) By the same method as Example 4.2(1), the proof is completed.

By the same method as above, we obtain that $MSS_{26} \sharp MSS_{26}$ is another simple closed 26-surface. While there are many types of $MSS_{26} \sharp MSS_{26}$, those are 26-isomorphic to each other.

Consequently, we obtain the following:

Theorem 4.3. Let X and Y be simple closed k-surfaces in SC_k , $k \in \{18, 26\}$. Then $X \sharp Y$ is a simple closed k-surface in SC_k .

٦

Let X, Y, and Z be simple closed k-surfaces in $SC_k, k \in \{18, 26\}$. Even though $X \sharp Y$ and $(X \sharp Y) \sharp Z$ need not be equal to $Y \sharp X$ and $X \sharp (Y \sharp Z)$, respectively, $X \sharp Y$ and $(X \sharp Y) \sharp Z$ are k-isomorphic to $Y \sharp X$ and $X \sharp (Y \sharp Z)$, respectively. Thus we observe that the set of k-isomorphism classes of simple closed k-surfaces in SC_k forms a commutative monoid with an operation induced from the digital connected sum of Definition 6. For a simple closed k-surface X in SC_k , consider the k-isomorphism class of $X, k \in \{18, 26\}, i.e.$,

$$[X] := \{ X' | X \approx_k X' \}.$$

Lemma 4.4. Let X,Y,Z, and W be simple closed k-surfaces in $SC_k, k \in \{18,26\}$. If $X \approx_k Y$ and $Z \approx_k W$, then $X \not\equiv Z \approx_k Y \not\equiv W$ in SC_k .

Proof: Let $h_1: X \to Y$ be a k-isomorphism and let $h_2: Z \to W$ be a k-isomorphism. Since each of X, Y, Z, and W has a subset $A \approx_{(k,8)} MSC_8''$, we obtain both $X\sharp Z$ and $Y\sharp W$ with k-adjacency, $k\in\{18,26\}$. For any k-isomorphism, its restriction map on any subset of the domain of the given k-isomorphism is also a k-isomorphism [14].

For $A \subset X$, consider $f: A \to f(A) \subset Z$ which is a k-isomorphism of Definition 6 related to $X\sharp Z$, and

 $i_1: X-A' \to X\sharp Z$ which is an inclusion map, where $A' \approx_{(k,8)} Int(MSC'_8)$, and $A' \subset A$ and further,

 $i_2: Z - f(A') \to X \sharp Z$ which is an inclusion map.

Besides, for $A \subset Y$ consider $g: A \to g(A) \subset W$

which is a k-isomorphism of Definition 6 related to $Y \sharp W$ and further,

 $j_1: Y-A'\to Y\sharp W$ which is an inclusion map, and

 $j_2: W - g(A') \to Y \sharp W$ which is an inclusion map.

Then we have a map $h: X\sharp Z \to Y\sharp W$ defined by

$$h(t) = \begin{cases} j_1 \circ h_1|_{X - A'} \circ i_1^{-1}(t) & \text{if } t \in X - A' \subset X \sharp Z; \\ j_2 \circ h_2|_{Z - f(A')} \circ i_2^{-1}(t) & \text{if } t \in Z - f(A') \subset X \sharp Z, \end{cases}$$

where $A' \approx_{(k,8)} Int(MSC'_8)$ and $A' \subset A$. Then h is a k-isomorphism, which means that $X \sharp Z \approx_k Y \sharp W$.

By Lemma 4.4 we obtain the following:

Definition 7. Let X and Y be simple closed k-surfaces in $SC_k, k \in \{18, 26\}$. Then we define $[X] \cdot [Y] = [X \sharp Y]$.

By Definition 7, Remark 3.1, and Lemma 4.4, we obtain the following:

Theorem 4.5. The set of k-isomorphism classes of simple closed k-surfaces in SC_k is a commutative monoid with the '·' operation in Definition 7, $k \in \{18, 26\}$.

Proof: Let us prove the following: Let X, Y, and Z be simple closed k-surfaces in SC_k , $k \in \{18, 26\}$, then we suffice to prove the following:

- $(1) ([X] \cdot [Y]) \cdot [Z] = [X] \cdot ([Y] \cdot [Z]).$
- (2) $[MSS'_k] \cdot [X] = [X]$ and $[X] \cdot [MSS'_k] = [X]$.
- $(3) [X] \cdot [Y] = [Y] \cdot [X].$

Let us now prove (1). We suffice to prove that $(X\sharp Y)\sharp Z\approx_k X\sharp (Y\sharp Z)$, $k\in\{18,26\}$. By Definition 6, consider a subset $A\subset X,Y$, and Z such that $A\approx_{(k,8)}MSC_8'^*$. While $(X\sharp Y)\sharp Z$ need not be equal to $X\sharp (Y\sharp Z)$, they are k-isomorphic to each other by the similar method as that of Lemma 4.4, which proves the assertion (1).

- (2) Since $MSS'_k \sharp X \approx_k X \approx_k X \sharp MSS'_k$ via $A(\subset MSS'_k) \approx_{(k,8)} MSC'^*_8 \subset X$, $k \in \{18, 26\}$, which proves the assertion (2).
- (3) Obviously, by Definition 6, consider two k-isomorphisms $f: A \to f(A)$ and $f^{-1}: f(A) \to A$. Then, $X \sharp Y$ is k-isomorphism to $Y \sharp X$, which proves the assertion (3).

By Theorem 4.5 (2), it turns out that $[MSS'_k]$ acts the identity element under the operation '·' of Definition 6, $k \in \{18, 26\}$.

5. Commutative monoid of the set of k-homotopy classes of closed k-surfaces

The notion of k-homotopy equivalence has been introduced in [11] and has been used in classifying discrete objects with a k-homotopy equivalence; however there are insufficient presentations of some topics in [11]. Thus, the paper [23] contains the corrected one.

Definition 8. [11] (see also [23]) For two discrete topological spaces with k-adjacency (X,k) and (Y,k) in \mathbb{Z}^n , if there are k-continuous maps $h: X \to Y$ and $l: Y \to X$ such that $l \circ h \simeq_k 1_X$ and $h \circ l \simeq_k 1_Y$, then the map $h: X \to Y$ is called a (digital) k-homotopy equivalence. And we use the notation $X \simeq_{k \cdot h \cdot e} Y$.

In Section 5, we still need to take the subset $A \approx_{(k,8)} MSC_8^{\prime*}$ to establish a commutative monoid of the set of k-homotopy equivalence classes of closed k-surfaces in \mathbb{Z}^3 with an operation derived from a digital connected sum of Definition 6.

Unlike the digital connected sum of Definition 6, there are some difficulties in establishing a digital connected sum of two closed k-surfaces X and Y which are not simple because there may not be subsets A in both X and Y such that A is (k,8)-isomorphism to $MSC_8'^*$. Furthermore, we may also meet an obstacle to the establishment of $X\sharp Y\sharp Z$ for some closed k-surfaces X,Y, and Z in \mathbf{Z}^3 . Thus, in this section we consider the set of only closed k-surfaces $X\subset \mathbf{Z}^3$ having a subset $A\subset X$ such that $A:=N_k(x,1)\approx_{(k,8)}MSC_8'^*$ and establishing the associativity of the commutative monoid of the set of k-homotopy equivalence classes of closed k-surfaces in \mathbf{Z}^3 , $k\in\{18,26\}$. Then we denote by CS_k the above set. Some k-homotopic properties of $X\in CS_k$ are now investigated in relation with the digital connected sum of Definition 6.

In CS_k , for a closed k-surface X, consider the k-homotopy equivalence class of X as follows.

$$[X] := \{ X' | X \approx_{k \cdot h \cdot e} X' \}.$$

Using both an argument similar to that given for the proof of Lemma 4.4, Remark 4.1, and a k-homotopy equivalence instead of a k-isomorphism of Lemma 4.4, we obtain the following:

Lemma 5.1. In \mathbb{Z}^3 , let X, Y, Z, and W be spaces in CS_k . If $X \approx_{k \cdot h \cdot e} Y$ and $Z \approx_{k \cdot h \cdot e} W$, then $X \sharp Z \approx_{k \cdot h \cdot e} Y \sharp W$.

By Lemma 5.1 and Definitions 6 and 7, we obtain that for $X, Y \in CS_k$, we define $[X] \cdot [Y]$ to be $[X \sharp Y]$.

Obviously, for X, Y, and Z in CS_k , $X\sharp Y$ and $(X\sharp Y)\sharp Z$ need not be equal to $Y\sharp X$ and $X\sharp (Y\sharp Z)$, respectively. Meanwhile, we obtain the following:

Theorem 5.2. Let X, Y, and Z be closed k-surfaces in CS_k , $k \in \{18, 26\}$. Then we obtain the following:

- $(1) ([X] \cdot [Y]) \cdot [Z] = [X] \cdot ([Y] \cdot [Z]), k \in \{18, 26\}.$
- (2) $[MSS'_k] \cdot [X] = [X]$ and $[X] \cdot [MSS'_k] = [X]$.
- (3) $[X] \cdot [Y] = [Y] \cdot [X]$.

Proof: (1) Since $(X\sharp Y)\sharp Z$ is k-homotopy equivalent to $X\sharp (Y\sharp Z),$ $k\in\{18,26\},$ the proof is completed.

- (2) Since $MSS'_k \sharp X \approx_{k \cdot h \cdot e} X \approx_{k \cdot h \cdot e} X \sharp MSS'_k$ by using $A(\subset MSS'_k) \approx_{(k,8)} MSC'^*_8 \subset X$, $k \in \{18, 26\}$, the proof is completed.
- (3) Obviously, $X \sharp Y$ and $Y \sharp X$ are k-homotopy equivalent to each other, the proof is completed.

By Theorem 5.2(2), it turns out that $[MSS'_k]$ is the identity element under the operation '·' in Definition 7, $k \in \{18, 26\}$.

Remark 5.3. (Correcting) In [21], since the two objects U_1 of Figure 6 and U_1 of Figure 7 are misprinted at the point $(0,0) \in \mathbf{Z}^2$. Thus they can be corrected, as follows (see Figure 2). With the same criterion, the objects E_1 of Figure 1 in [20] should be corrected at the point $(0,0) \in \mathbf{Z}^2$ (motivated from Figure 4 of [12]).

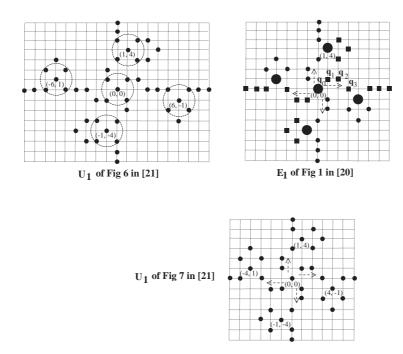


Figure 2. Correction of objects in [20, 21]

References

- [1] G. Bertrand and M. Malgouyres, Some topological properties of discrete surfaces, Jour. of Mathematical Imaging and Vision, 11 (1999) 207-221.
- [2] L. Boxer, Digitally continuous functions Pattern Recognition Letters 15 (1994) 833-839.
- [3] L. Boxer, A classical construction for the digital fundamental group, *Jour. of Mathematical Imaging and Vision*, **10** (1999) 51-62.
- [4] L. Boxer, Properties of digital homotopy, Jour. of Mathematical Imaging and Vision 22 (2005) 19-26.
- [5] A.I. Bykov, L.G. Zerkalov, M.A. Rodriguez Pineda, Index of a point of 3-D digital binary image and algorithm of computing its Euler characteristic, *Pattern Recognition* 32 (1999) 845-850.

- [6] L. Chen, Discrete Surfaces and Manifolds, Scientific and Practical Computing, 2004.
- [7] A.V. Evako, Topological properties of closed digital spaces: One method of constructing digital models of closed continuous surfaces by using covers, Computer Vision and Image Understanding, 102(2006) 134-144.
- [8] S.E. Han, Computer topology and its applications, Honam Math. Jour., 25(1)(2003) 153-162.
- [9] S.E. Han, Connected sum of digital closed surfaces, *Information Sciences* 176(3)(2006) 332-348.
- [10] S.E. Han, Discrete Homotopy of a Closed k-Surface, IWCIA 2006 LNCS 4040, Springer-Verlag Berlin, pp.214-225, 2006.
- [11] S.E. Han, Minimal digital pseudotorus with k-adjacency, Honam Mathematical Journal 26(2) (2004) 237-246.
- [12] S.E. Han, Non-product property of the digital fundamental group, *Information Sciences* **171** (1-3) (2005) 73-91.
- [13] S.E. Han, On the simplicial complex stemmed from a digital graph, Honam Mathematical Journal 27 (1) (2005) 115-129.
- [14] S.E. Han, Minimal simple closed 18-surfaces and a topological preservation of 3D surfaces, *Information Sciences* **176**(2)(2006) 120-134.
- [15] S.E. Han, Digital fundamental group and Euler characteristic of a connected sum of digital closed surfaces, *Information Sciences* **177**(16)(2007) 3314-3326.
- [16] S.E. Han, Strong k-deformation retract and its applications, Journal of the Korean Mathematical Society 44(6)(2007) 1479-1503.
- [17] S.E. Han, Comparison among digital fundamental groups and its applications, Information Sciences 178(2008) 2091-2104.
- [18] S.E. Han, Equivalent (k_0, k_1) -covering and generalized digital lifting, *Information Sciences* **178** (2) (2008) 550-561.
- [19] S.E. Han, The k-homotopic thinning and a torus-like digital image in \mathbf{Z}^n , Journal of Mathematical Imaging and Vision 31 (1) (2008) 1-16.
- [20] S.E. Han, Remark on a generalized universal covering space, Honam Mathematical Jour 31(3)(2009) 267-278.
- [21] S.E. Han, Existence problem of a generalized universal covering space, *Acta Applicandae Mathematicae* **109**(3)(2010) 805-827.
- [22] G. T. Herman, Oriented surfaces in digital spaces, CVGIP: Graphical Models and Image Processing 55 (1993) 381-396.
- [23] In-Soo Kim, S.E. Han, Digital covering theory and its applications, *Honam Math. Jour.* 30(4)(2008) 589-602.
- [24] In-Soo Kim, S.E. Han, C.J. Yoo, The pasting property of digital continuity, Acta Applicandae Mathematicae (2009), doi 10.1007/s 10440-008-9422-0, Online first publication.
- [25] R. Klette, A. Rosenfeld, Digital Geometry, Morgan Kaufmann, San Francisco, 2004
- [26] T.Y. Kong, A. Rosenfeld, Topological Algorithms for the Digital Image Processing, Elsevier Science, Amsterdam, 1996.
- [27] D.G. Morgenthaler, A. Rosenfeld, Surfaces in three dimensional digital images, Information and Control, 51 (1981) 227-247.
- [28] A. Rosenfeld, Digital topology, Am. Math. Mon. 86 (1979) 76-87.

Faculty of Liberal Education, Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju-City Jeonbuk, 561-756, Republic of Korea

 $\begin{tabular}{ll} Tel: $+82$-63-270-$4449, \\ E-mail:sehan@jbnu.ac.kr \end{tabular}$