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COMMUTATIVE MONOID OF THE SET OF
k-ISOMORPHISM CLASSES OF SIMPLE CLOSED

k-SURFACES IN Z3

Sang-Eon Han

Abstract. In this paper we prove that with some hypothesis the
set of k-isomorphism classes of simple closed k-surfaces in Z3 forms
a commutative monoid with an operation derived from a digital
connected sum, k ∈ {18, 26}. Besides, with some hypothesis the
set of k-homotopy equivalence classes of closed k-surfaces in Z3 is
also proved to be a commutative monoid with the above operation,
k ∈ {18, 26}.

1. Introduction

In order to study some properties of the set of k-isomorphism classes
of simple closed k-surfaces in Z3, we need to recall some notions, as
follows. In algebra, a monoid is defined to be a set X with a binary
operation ∗ : X ×X → X, obeying the following axioms:
• (X, ∗) has the associative law,
• there is an element e ∈ X such that for any element x ∈ X x ∗ e =
e ∗ x = x and further,
• if x ∗ y = y ∗ x for any elements x, y ∈ X, then we say that (X, ∗) is a
commutative monoid.

Let N and Z be the sets of natural numbers and integers, respectively.
Let Zn be the set of lattice points in Euclidean n-dimensional space,
n ∈ N. In [27] a closed k-surface was studied in Z3, k ∈ {6, 26} and
in [1] a closed 18-surface was introduced in Z3. Besides, the study of
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various properties of a closed k-surface in Z3 and digital space includes
the papers [1, 9, 10, 14, 25].

The connected sum in geometric topology cannot be available in dis-
crete (or digital) geometry. Thus we need its digital version to study a
digital k-surface. Motivated by the notion of connected sum in geometric
topology, its digital version was established in [9] (see also [7, 14]). Thus,
the notion of digital connected sum of two simple closed k-surfaces was
introduced and further, its digital topological properties were partially
studied [9, 15]. In [5] a geometric realization of a digital space X ⊂ Z3

has been introduced. Moreover, in [15] the Euler characteristic of a dig-
ital space was studied in relation with a digital connected sum in [9]
(see also [15]). In [14] two types of simple, closed 18-surfaces in Z3 were
introduced. One is 18-contractible, denoted by MSS′18 (see 3.1) and the
other is not 18-contractible, denoted by MSS18 (see 3.1). Especially,
MSS′18 plays an important role in establishing the monoid structure of
the set of k-isomorphism classes of simple closed k-surfaces in Z3.

In this paper we prove that with some hypothesis the set of k-iso-
morphism classes of simple closed k-surfaces in Z3 forms a commuta-
tive monoid with an operation derived from a digital connected sum in
[9], k ∈ {18, 26}. Besides, we prove that both MSS′18 and MSS18 are
26-surfaces and further, MSS′18 is proved 26-contractible. Moreover, k-
contractibility of MSS′k allows us to establish a commutative monoid of
the set of k-isomorphism classes of simple closed k-surfaces with an oper-
ation derived from a digital connected sum, k ∈ {18, 26}. In other words,
the k-isomorphism class of MSS′k, denoted by [MSS′k], is proved to be
the identity element for the above-mentioned monoid, k ∈ {18, 26}. Sim-
ilarly, with some hypothesis we also form another commutative monoid
of the set of k-homotopy classes of closed k-surfaces in Z3, k ∈ {18, 26}.
This kinds of two monoids of the sets of k-isomorphism classes of sim-
ple closed k-surfaces in Z3 and k-homotopy equivalence classes of closed
k-surfaces can be used in classifying simple closed k-surfaces in Z3

This paper is organized as follows. Section 2 provides basic notions.
Section 3 investigates some properties of a closed k-surface and a relative
k-homotopy, k ∈ {18, 26}. Section 4 establishes a commutative monoid
of the set of k-isomorphism classes of closed k-surfaces with an operation
derived from a digital connected sum, k ∈ {18, 26}. Section 5 shows that
with some hypothesis the set of k-homotopy equivalence classes of closed
k-surfaces with an operation forms a commutative monoid, k ∈ {18, 26}.
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2. Preliminaries

In order to make this paper self-contained, we recall some necessary
terminology from earlier literature in [1, 3, 25, 28]. Since a closed k-
surface in Z3 can be studied with a digital k-graph structure in Z3, we
now use the k(m,n) (or km)-adjacency relations of Zn, n ∈ N [8] (see
also [12]):
Let m be a positive integer with 1 ≤ m ≤ n. Then we say that two
distinct points p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) ∈ Zn are
k(m,n)-adjacent according to m if
(1) there are at most m distinct indices i such that |pi − qi| = 1; and
(2) for all indices i such that |pi − qi| 6= 1, pi = qi.

In terms of this operator the number m determines one of the k(m,n)-
adjacency relations of Zn, we may use k := k(m,n). Precisely, by N∗

k (p)
we denote the set of the points q ∈ Zn which are km-adjacent to a given
point p and the number k := k(m,n) is the cardinal number of N∗

k (p).
Consequently, we obtain the following k-adjacency relations of Zn [8]
(see also [9, 15]).

Proposition 2.1. [19] k := k(m,n) =
∑n−1

i=n−m 2n−iCn
i , where Cn

i =
n!

(n−i)! i! .

In general, for a subset X ⊂ Zn with k-adjacency, n ∈ N, we call it a
digital space with k-adjacency, denoted by (X, k), and further, (X, k) is
usually considered in a digital picture (Zn, k, k̄,X) [27, 28], k and k̄ are
related to the adjacencies of X and Zn−X, respectively. In this paper,
we assume (k, k̄) ∈ {(k, 2n), (2n, 3n−1)}. Hereafter, we call briefly (X, k)
a space if not confused. Owing to the digital k-connectivity paradox in
[26], we commonly assume that k 6= k̄ except for the case (Z, 2, 2, X).
For a, b ∈ Z with a � b, the set [a, b]Z = {n ∈ Z|a ≤ n ≤ b} is called a
digital interval [3].

A digital space (X, k) is a digital graph Gk [13] (see also [15, 16, 18]).
To be specific, the vertex set of Gk can be considered as the set of points
of X. Besides, two points x1, x2 ∈ X determine a k-edge of Gk if and
only if x1 and x2 are k-adjacent in X.

A k-path from x to y in X is a sequence (x = x0, x1, x2, · · · , xm−1,
xm = y) in X such that each point xi is k-adjacent to xi+1 for m ≥ 1
and i ∈ [0,m−1]Z. Then, the number m is called the length of this path
[26]. If x0 = xm, then the k-path is said to be closed [26]. A set of lattice
points is k-connected if it is not a union of two disjoint non-empty sets
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that are not k-adjacent to each other [25]. Thus a singleton set with k-
adjacency is k-connected. For a digital space (X, k), two distinct points
x, y ∈ X are k-connected [22] if there is a k-path from x to y in X. For
an adjacency relation k of Zn, a simple k-path with m elements in Zn

is assumed to be a sequence (xi)i∈[0,m−1]Z ⊂ Zn such that xi and xj are
k-adjacent if and only if either j = i + 1 or i = j + 1 [25]. Furthermore,
a simple closed k-curve with l elements in Zn is a sequence (xi)i∈[0,l−1]Z
derived from a simple k-curve (xi)i∈[0,l]Z with x0 = xl, where xi and
xj are k-adjacent if and only if j = i + 1(mod l) or i = j + 1(mod l)
[25]. By SCn,l

k we denote a simple closed k-curve with l elements in
Zn, n ∈ N− {1} [12].

Motivated by both the digital continuity of [28] and the (k0, k1)-
continuity of [2], we say that a function f : X → Y is (k0, k1)-continuous
at a point x0 ∈ X.
Let (X, k0) and (Y, k1) be spaces in Zn0 and Zn1 , respectively. A function
f : X → Y is (k0, k1)-continuous at a point x0 ∈ X if and only if
f(Nk0(x0, 1)) ⊂ Nk1(f(x0), 1), where Nk0(x0, 1) ⊂ X and Nk1(f(x0), 1)
⊂ Y .

Unlike the pasting property of classical continuity in topology, the
(k0, k1)-continuity has some intrinsic features [24]: (k0, k1)-continuity
has the almost pasting property instead of the pasting property of classical
topology.
For a k-adjacency relation of Zn, we recall that a simple closed k-curve
with l elements in X ⊂ Zn is the image of a (2, k)-continuous function
f : [0, l − 1]Z → X such that f(i) and f(j) are k-adjacent if and only if
either j = i + 1(mod l) or i = j + 1(mod l) [26]. Thus, we may use the
notation SCn,l

k := (ci)i∈[0,l−1]Z with f(i) = ci [12].

Recently, digital graph versions of (k0, k1)-continuity, (k0, k1)-homeo-
morphism, (k0, k1)-covering, and (k0, k1)-homotopy in digital topology
were established in [13]. Consequently, we may use the term a (k0, k1)-
isomorphism as in [4, 13] rather than a (k0, k1)-homeomorphism as in
[3]:

Definition 1. [13] (see also [4]) For two spaces (X, k0) in Zn0 and
(Y, k1) in Zn1 , a map h : X → Y is called a (k0, k1)-isomorphism if h
is a (k0, k1)-continuous bijection and further, h−1 : Y → X is (k1, k0)-
continuous. Then, we use the notation X ≈(k0,k1) Y . If n0 = n1 and
k0 = k1, then we call it a k0-isomorphism and use the notation X ≈k0 Y
or X ≈ Y if not confused.
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3. Some properties of a simple closed k-surface in Z3, k ∈
{18, 26}

For a space (X, k) and its subset A, we call ((X, A), k) a digital space
pair with k-adjacency. Furthermore, if A is a singleton set {x0}, then
(X,x0) is called a pointed space [3]. Motivated by the k-homotopy of
[3], the homotopy relative to a subset A ⊂ X was established in [9] and
has been used in studying digital spaces in relation with a strong k-
deformation retract, a k-homotopic thinning [10] (see also [16]), and a
k-contractibility [17]. As special case of the (k0, k1)-homotopy in [3], we
use the following k-homotopy in this paper.

Definition 2. [9] (see also [16]) Let (X, k) and (Y, k) be spaces in Zn,
and A ⊂ X. Let f, g : X → Y be (k, k) (briefly, k)-continuous functions.
Suppose the existence of both m ∈ N and a function F : X×[0,m]Z → Y
such that
• for all x ∈ X, F (x, 0) = f(x) and F (x, m) = g(x);

• for all x ∈ X, the induced function Fx : [0,m]Z → Y defined by
Fx(t) = F (x, t) is (2, k)-continuous for all t ∈ [0,m]Z;
• for all t ∈ [0,m]Z, the induced function Ft : X → Y defined by
Ft(x) = F (x, t) is k-continuous for all x ∈ X.
Then, F is called a k-homotopy between f and g, and f and g are k-
homotopic in Y .
• Furthermore, for all t ∈ [0,m]Z, then suppose the induced map Ft on
A is a constant which is the prescribed function from A to Y . In other
words, Ft(x) = f(x) = g(x) for all x ∈ A and for all t ∈ [0,m]Z.

Then, we call F a k-homotopy relative to A between f and g, and
we say that f and g are k-homotopic relative to A in Y denoted by
f 'k·rel .A g.

In Definition 2, if A = {x0} ⊂ X, then we say that F is a pointed
k-homotopy at {x0} in [3].

Definition 3. [3] If, for some x0 ∈ X, 1X is k-homotopic to the
constant map with space x0 relative to {x0}, then we say that (X, x0)
is pointed k-contractible.

Indeed, the notion of k-contractibility is slightly different from both
the contractibility in Euclidean topology [3, 12] and the contractibility
of [3].

In classical topology, the notions of interior and exterior have been
essentially used in studying a topological space. By analogy, we obtain
the following from the view point of digital topology.
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Definition 4. [9] Let c∗ = (x0, x1, · · · , xn) be a closed k-curve in
Z2. Let c̄∗ be the complement of c∗ in Z2. A point x of c̄∗ is said to be
interior to c∗ if it belongs to the bounded k̄-connected component of c̄∗.
Otherwise, it is called exterior to c∗. The set of all interior(respectively
exterior) points to c∗ is denoted by Int(c∗)(respectively Ext(c∗)).

We now recall the terminology for the study of a digital k-surface in
Z3. A point x ∈ X ⊂ Z3 is called a k-corner if x is k-adjacent to two and
only two points y, z ∈ X such that y and z are k-adjacent to each other
[1]. The k-corner x is called simple if y and z are not k-corners and if x
is the only point k-adjacent to both y, z. X is called a generalized simple
closed k-curve if what is obtained by removing all simple k-corners of X
is a simple closed k-curve [1]. For a k-connected space (X, k) in Z3, we
recall |X|x = N∗

26(x) ∩ X, N∗
26(x) = {x′|x and x′ are 26-adjacent}. In

other words, |X|x = N26(x, 1)− {x} [9, 10, 14].
By using the above terminology, the notion of closed k-surface was

introduced:

Definition 5. [1] Let (X, k) be a space in Z3, and X̄ = Z3 − X.
Then, X is called a closed k-surface if it satisfies the following:
(1) In case (k, k̄) ∈ {(26, 6), (6, 26)}, then
(a) for each point x ∈ X, |X|x has exactly one k-component k-adjacent
to x;

(b) |X̄|x has exactly two k̄-components which are k̄-adjacent to x; we
denote by Cx x and Dx x these two components; and
(c) for any point y ∈ Nk(x)∩X, Nk̄(y)∩Cx x 6= ∅ and Nk̄(y)∩Dx x 6= ∅,
where Nk(x) = N∗

k (x) ∪ {x} and N∗
k (x) = {x′|x and x′ are k −

adjacent}.
(2) In case (k, k̄) = (18, 6), then
(a) X is k-connected,
(b) for each point x ∈ X, |X|x is a generalized simple closed k-curve.

In (1) and (2), for k ∈ {18, 26} if the image |X|x is a simple closed
k-curve, then X is called simple.

Obviously, we observe that each closed 6-surface is simple (see MSS6

in Figure 1). Furthermore, in this paper we will not consider the ori-
entability of a closed k-surface in [27].

The paper [14] establishes the following:
{

MSS18 ≈18 (MSC8 × {1}) ∪ (Int(MSC8)× {0, 2});
MSS′18 ≈18 (MSC ′

8 × {1}) ∪ (Int(MSC ′
8)× {0, 2}),

}
(3.1)
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where ‘×’ means the Cartesian product (or digital product) and
MSC8 := ((0, 0), (1,−1), (2,−1), (3, 0), (2, 1), (1, 1)) and,
MSC ′

8 := ((0, 0), (1, 1), (0, 2), (−1, 1)).
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Figure 1. Simple closed 6-, 18-, and 26-surfaces from
[9, 14, 15] with (6, 26)-and (k, 6)-structures, k ∈ {18, 26}

Remark 3.1. The space MSS′18 in (3.1) can be represented as the
set
{(±1, 0, 0), (0,±1, 0), (0, 0,±1)} in (Z3, 18, 6,MSS′18).

In [14], it turns out that MSS18 is a simple closed 18-surface not
18-contractible (see Figure 1) and further, MSS′18 is a simple closed
18-surface which is 18-contractible. In this paper each of MSS18 and
MSC ′

18 is considered with an (18, 6) or a (26, 6)-structure instead of the
others in [6].

Both 18-surfaces MSS18 and MSS′18 have some useful properties, as
follows.

Lemma 3.2. (1) MSSk is unique up to k-isomorphism, k ∈ {18, 26}.
(2) MSS18 is also a simple closed 26-surface not 26-contractible.
(3) MSS′18 is also a simple closed 26-surface which is 26-contractible.
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Proof: (1) Trivial.
(2) Since MSS18 is obviously a simple closed 26-surface with a (26, 6)-

structure and further, there is no 26-homotopy on MSS18 making 1MSS18

26-homotopic to a constant map c{pi}, where pi is an arbitrary point in
MSS18. Thus, MSS18 cannot be 26-homotopy equivalent to a singleton
in MSS18, the proof is completed.

(3) MSS′18 is obviously a simple closed 26-surface with a (26, 6)-
structure. Furthermore, MSS′18 is 26-contractible due to the 18-contract-

ibility of MSS′18 in [14].
Hereafter, by Lemma 3.2, we may use MSS18 and MSS′18 as MSS26

and MSS′26, respectively. Namely, we may use MSS18 := MSS26 and
MSS′18 := MSS′26 in this paper.

4. Commutative monoid of the set of k-isomorphism classes
of simple closed k-surfaces in Z3

In relation with the establishment of a digital version of a connected
sum, we have used the following spaces
MSC ′∗

8 := MSC ′
8 ∪ {q} and MSC∗

8 := MSC8 ∪ {x1, x2}, come from
MSC ′

8 and MSC8 in Z2 [9, 14]. MSC ′∗
8 has been used in establishing

a digital connected sum. In this section we denote by SCk the set of all
simple closed k-surface X ⊂ Z3 in which each point x ∈ X has a subset
Nk(x, 1) ⊂ X satisfying Nk(x, 1) ≈(k,8) MSC ′∗

8 , k ∈ {18, 26}.
In addition, we obtain the following:
(1) MSC ′∗

8 := MSC ′
8 ∪ Int(MSC ′

8),
where MSC ′

8 ≈8 {w0 = (0, 0), w1 = (−1, 1), w2 = (−2, 0), w3 = (−1,−1)}.
(2) MSC∗

8 := MSC8 ∪ Int(MSC8) ≈(8,4) N4(p, 1) ⊂ Z2, p ∈ Z2,
where MSC8 ≈8 {c0 = (0, 0), c1 = (1, 1), c2 = (1, 2), c3 = (0, 3), c4 =
(−1, 2),
c5 = (−1, 1)}.

Since a simple closed k-surface in SCk has a subset A ⊂ X satisfying
A ≈(k,8) MSC ′∗

8 , k ∈ {18, 26}, hereafter, we may take a subset A ≈(k,8)

MSC ′∗
8 for the digital connected sum of Definition 6 below. Thus we can

establish a commutative monoid structure of the set of k-isomorphism
classes of simple closed k-surfaces in SCk with an operation derived from
the digital connected sum, k ∈ {18, 26}. As a special case of the digital
connected sum in [9], we introduce the following which is suitable for an
establishment of a monoid of the set of k-isomorphism classes of simple
closed k-surfaces in SCk.
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Definition 6. Let X and Y be simple closed k-surfaces in SCk, k ∈
{18, 26}. Consider A′ ⊂ A ⊂ X and take A − A′ ⊂ X, where A ≈(k,8)

MSC ′∗
8 and A′ ≈(k,8) Int(MSC ′

8). Let f : A → f(A) ⊂ Y be a k-
isomorphism. Remove A′ and f(A′) from X and Y , respectively. Then,
the disjoint union of X ′ and Y ′ induced from the identification x with
f(x) ∈ Y ′ for all x ∈ A − A′ is taken, denoted by X]Y , where X ′ =
X − A′, Y ′ = Y − f(A′) and any two points p ∈ X ′ ⊂ X]Y and
q ∈ Y ′ ⊂ X]Y with p, q /∈ X]Y −f(A−A′) are not 26-adjacent in X]Y .

Remark 4.1. In relation with the conditions (a) and (b) of (1), and
(b) of (2) in Definition 5, we need the statement that any two points
p ∈ X ′ ⊂ X]Y and q ∈ Y ′ ⊂ X]Y with p, q /∈ X]Y − f(A−A′) are not
26-adjacent in X]Y of Definition 6.

In order to show that a digital connected sum is essentially used in
establishing a monoid structure of the set of k-isomorphism classes of
simple closed k-surfaces in SCk, k ∈ {18, 26}, we use the following:

Example 4.2. (1) MSS26]MSS′26 ≈26 MSS26.
(2) MSS′26]MSS′26 ≈26 MSS′26.

Proof: (1) We can consider MSS26]MSS′26 with 26-adjacency in
(Z3, 26, 6,MSS26]MSS′26) so that MSS26]MSS′26 ≈26 MSS26 [9].
Precisely, take two subsets, {p0, p1, p9, p5, p7} := A ⊂ MSS26 (see Fig-
ure 1) and {c0, c1, c2, c3, c4} := B ⊂ MSS′26 (see Figure 1) which are 26-
isomorphic to each other. Then, consider a 26-isomorphism f : A → B
such that

f(p0) = c0, f(p1) = c1, f(p9) = c2, f(p5) = c3, f(p7) = c4

and remove the two points p0 ∈ MSS26 and c0 = f(p0) ∈ MSS′26.
Gluing the two remaining sets MSS26 − {p0} and MSS′26 − {c0}, we
obtain MSS26]MSS′26 by using the map f so that MSS26]MSS′26 is
still 26-isomorphic to the space MSS26.
By the same method as above, we obtain MSS18]MSS′18 ≈18 MSS18 is
also established with 18-adjacency in (Z3, 18, 6,MSS18]MSS′18).

(2) By the same method as Example 4.2(1), the proof is completed.

By the same method as above, we obtain that MSS26]MSS26 is
another simple closed 26-surface. While there are many types of MSS26

]MSS26, those are 26-isomorphic to each other.
Consequently, we obtain the following:

Theorem 4.3. Let X and Y be simple closed k-surfaces in SCk,
k ∈ {18, 26}. Then X]Y is a simple closed k-surface in SCk.
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Let X, Y , and Z be simple closed k-surfaces in SCk, k ∈ {18, 26}.
Even though X]Y and (X]Y )]Z need not be equal to Y ]X and X](Y ]Z),
respectively, X]Y and (X]Y )]Z are k-isomorphic to Y ]X and X](Y ]Z),
respectively. Thus we observe that the set of k-isomorphism classes of
simple closed k-surfaces in SCk forms a commutative monoid with an
operation induced from the digital connected sum of Definition 6. For a
simple closed k-surface X in SCk, consider the k-isomorphism class of
X, k ∈ {18, 26}, i.e.,

[X] := {X ′|X ≈k X ′}.
Lemma 4.4. Let X, Y, Z, and W be simple closed k-surfaces in

SCk, k ∈ {18, 26}. If X ≈k Y and Z ≈k W , then X]Z ≈k Y ]W in
SCk.

Proof: Let h1 : X → Y be a k-isomorphism and let h2 : Z → W be
a k-isomorphism. Since each of X, Y, Z, and W has a subset A ≈(k,8)

MSC ′∗
8 , we obtain both X]Z and Y ]W with k-adjacency, k ∈ {18, 26}.

For any k-isomorphism, its restriction map on any subset of the domain
of the given k-isomorphism is also a k-isomorphism [14].

For A ⊂ X, consider f : A → f(A) ⊂ Z which is a k-isomorphism of
Definition 6 related to X]Z, and
i1 : X−A′ → X]Z which is an inclusion map, where A′ ≈(k,8) Int(MSC ′

8),
and A′ ⊂ A and further,
i2 : Z − f(A′) → X]Z which is an inclusion map.

Besides, for A ⊂ Y consider g : A → g(A) ⊂ W
which is a k-isomorphism of Definition 6 related to Y ]W and further,
j1 : Y −A′ → Y ]W which is an inclusion map, and
j2 : W − g(A′) → Y ]W which is an inclusion map.

Then we have a map h : X]Z → Y ]W defined by

h(t) =

{
j1 ◦ h1|X−A′ ◦ i−1

1 (t) if t ∈ X −A′ ⊂ X]Z;

j2 ◦ h2|Z−f(A′) ◦ i−1
2 (t) if t ∈ Z − f(A′) ⊂ X]Z,

where A′ ≈(k,8) Int(MSC ′
8) and A′ ⊂ A. Then h is a k-isomorphism,

which means that X]Z ≈k Y ]W .
By Lemma 4.4 we obtain the following:

Definition 7. Let X and Y be simple closed k-surfaces in SCk, k ∈
{18, 26}. Then we define [X] · [Y ] = [X]Y ].

By Definition 7, Remark 3.1, and Lemma 4.4, we obtain the following:
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Theorem 4.5. The set of k-isomorphism classes of simple closed
k-surfaces in SCk is a commutative monoid with the ‘·’ operation in
Definition 7, k ∈ {18, 26}.

Proof: Let us prove the following: Let X, Y , and Z be simple closed
k-surfaces in SCk, k ∈ {18, 26}, then we suffice to prove the following:

(1) ([X] · [Y ]) · [Z] = [X] · ([Y ] · [Z]).
(2) [MSS′k] · [X] = [X] and [X] · [MSS′k] = [X].
(3) [X] · [Y ] = [Y ] · [X].
Let us now prove (1). We suffice to prove that (X]Y )]Z ≈k X](Y ]Z),

k ∈ {18, 26}. By Definition 6, consider a subset A ⊂ X,Y , and Z such
that A ≈(k,8) MSC ′∗

8 . While (X]Y )]Z need not be equal to X](Y ]Z),
they are k-isomorphic to each other by the similar method as that of
Lemma 4.4, which proves the assertion (1).

(2) Since MSS′k]X ≈k X ≈k X]MSS′k via A(⊂ MSS′k) ≈(k,8)

MSC ′∗
8 ⊂ X, k ∈ {18, 26}, which proves the assertion (2).

(3) Obviously, by Definition 6, consider two k-isomorphisms f : A →
f(A) and f−1 : f(A) → A. Then, X]Y is k-isomorphism to Y ]X, which
proves the assertion (3).

By Theorem 4.5 (2), it turns out that [MSS′k] acts the identity ele-
ment under the operation ‘·’ of Definition 6, k ∈ {18, 26}.

5. Commutative monoid of the set of k-homotopy classes of
closed k-surfaces

The notion of k-homotopy equivalence has been introduced in [11]
and has been used in classifying discrete objects with a k-homotopy
equivalence; however there are insufficient presentations of some topics
in [11]. Thus, the paper [23] contains the corrected one.

Definition 8. [11] (see also [23]) For two discrete topological spaces
with k-adjacency (X, k) and (Y, k) in Zn, if there are k-continuous maps
h : X → Y and l : Y → X such that l ◦ h 'k 1X and h ◦ l 'k 1Y , then
the map h : X → Y is called a (digital) k-homotopy equivalence. And
we use the notation X 'k·h·e Y .

In Section 5, we still need to take the subset A ≈(k,8) MSC ′∗
8 to

establish a commutative monoid of the set of k-homotopy equivalence
classes of closed k-surfaces in Z3 with an operation derived from a digital
connected sum of Definition 6.

Unlike the digital connected sum of Definition 6, there are some diffi-
culties in establishing a digital connected sum of two closed k-surfaces X
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and Y which are not simple because there may not be subsets A in both
X and Y such that A is (k, 8)-isomorphism to MSC ′∗

8 . Furthermore,
we may also meet an obstacle to the establishment of X]Y ]Z for some
closed k-surfaces X,Y , and Z in Z3. Thus, in this section we consider
the set of only closed k-surfaces X ⊂ Z3 having a subset A ⊂ X such
that A := Nk(x, 1) ≈(k,8) MSC ′∗

8 and establishing the associativity of
the commutative monoid of the set of k-homotopy equivalence classes of
closed k-surfaces in Z3, k ∈ {18, 26}. Then we denote by CSk the above
set. Some k-homotopic properties of X ∈ CSk are now investigated in
relation with the digital connected sum of Definition 6.

In CSk, for a closed k-surface X, consider the k-homotopy equivalence
class of X as follows.

[X] := {X ′|X ≈k·h·e X ′}.
Using both an argument similar to that given for the proof of Lemma 4.4,
Remark 4.1, and a k-homotopy equivalence instead of a k-isomorphism
of Lemma 4.4, we obtain the following:

Lemma 5.1. In Z3, let X, Y , Z, and W be spaces in CSk. If
X ≈k·h·e Y and Z ≈k·h·e W , then X]Z ≈k·h·e Y ]W .

By Lemma 5.1 and Definitions 6 and 7, we obtain that for X, Y ∈
CSk, we define [X] · [Y ] to be [X]Y ].

Obviously, for X,Y , and Z in CSk, X]Y and (X]Y )]Z need not be
equal to Y ]X and X](Y ]Z), respectively. Meanwhile, we obtain the
following:

Theorem 5.2. Let X, Y , and Z be closed k-surfaces in CSk, k ∈
{18, 26}. Then we obtain the following:

(1) ([X] · [Y ]) · [Z] = [X] · ([Y ] · [Z]), k ∈ {18, 26}.
(2) [MSS′k] · [X] = [X] and [X] · [MSS′k] = [X].
(3) [X] · [Y ] = [Y ] · [X].

Proof: (1) Since (X]Y )]Z is k-homotopy equivalent to X](Y ]Z),
k ∈ {18, 26}, the proof is completed.

(2) Since MSS′k]X ≈k·h·e X ≈k·h·e X]MSS′k by using A(⊂ MSS′k) ≈(k,8)

MSC ′∗
8 ⊂ X, k ∈ {18, 26}, the proof is completed.

(3) Obviously, X]Y and Y ]X are k-homotopy equivalent to each
other, the proof is completed.

By Theorem 5.2(2), it turns out that [MSS′k] is the identity element
under the operation ‘·’ in Definition 7, k ∈ {18, 26}.
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Remark 5.3. (Correcting) In [21], since the two objects U1 of Figure
6 and U1 of Figure 7 are misprinted at the point (0, 0) ∈ Z2. Thus they
can be corrected, as follows (see Figure 2). With the same criterion, the
objects E1 of Figure 1 in [20] should be corrected at the point (0, 0) ∈ Z2

(motivated from Figure 4 of [12]).
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(1, 4)


q

q
q


q
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Figure 2. Correction of objects in [20, 21]
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