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COMMUTATIVE MONOID OF THE SET OF
E-ISOMORPHISM CLASSES OF SIMPLE CLOSED
k-SURFACES IN Z3

SANG-EoON HAN

Abstract. In this paper we prove that with some hypothesis the
set of k-isomorphism classes of simple closed k-surfaces in Z® forms
a commutative monoid with an operation derived from a digital
connected sum, k € {18,26}. Besides, with some hypothesis the
set of k-homotopy equivalence classes of closed k-surfaces in Z2 is
also proved to be a commutative monoid with the above operation,
k € {18,26}.

1. Introduction

In order to study some properties of the set of k-isomorphism classes
of simple closed k-surfaces in Z3, we need to recall some notions, as
follows. In algebra, a monoid is defined to be a set X with a binary
operation * : X x X — X, obeying the following axioms:

e (X, *) has the associative law,

e there is an element e € X such that for any element x € X z*xe =
e x x = x and further,

o if zxy = yx*x for any elements x,y € X, then we say that (X, *) is a
commutative monoid.

Let N and Z be the sets of natural numbers and integers, respectively.
Let Z™ be the set of lattice points in Euclidean n-dimensional space,
n € N. In [27] a closed k-surface was studied in Z3, k € {6,26} and
in [1] a closed 18-surface was introduced in Z®. Besides, the study of
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various properties of a closed k-surface in Z3 and digital space includes
the papers [1, 9, 10, 14, 25].

The connected sum in geometric topology cannot be available in dis-
crete (or digital) geometry. Thus we need its digital version to study a
digital k-surface. Motivated by the notion of connected sum in geometric
topology, its digital version was established in [9] (see also [7, 14]). Thus,
the notion of digital connected sum of two simple closed k-surfaces was
introduced and further, its digital topological properties were partially
studied [9, 15]. In [5] a geometric realization of a digital space X C Z3
has been introduced. Moreover, in [15] the Euler characteristic of a dig-
ital space was studied in relation with a digital connected sum in [9]
(see also [15]). In [14] two types of simple, closed 18-surfaces in Z3 were
introduced. One is 18-contractible, denoted by M SS’g (see 3.1) and the
other is not 18-contractible, denoted by MSSig (see 3.1). Especially,
M SS'g plays an important role in establishing the monoid structure of
the set of k-isomorphism classes of simple closed k-surfaces in Z3.

In this paper we prove that with some hypothesis the set of k-iso-
morphism classes of simple closed k-surfaces in Z3 forms a commuta-
tive monoid with an operation derived from a digital connected sum in
[9], k € {18,26}. Besides, we prove that both MSS|g and MSSig are
26-surfaces and further, M SS/g is proved 26-contractible. Moreover, k-
contractibility of M S.S; allows us to establish a commutative monoid of
the set of k-isomorphism classes of simple closed k-surfaces with an oper-
ation derived from a digital connected sum, k € {18,26}. In other words,
the k-isomorphism class of M SS;, denoted by [MSS,], is proved to be
the identity element for the above-mentioned monoid, k € {18,26}. Sim-
ilarly, with some hypothesis we also form another commutative monoid
of the set of k-homotopy classes of closed k-surfaces in Z3, k € {18, 26}.
This kinds of two monoids of the sets of k-isomorphism classes of sim-
ple closed k-surfaces in Z2 and k-homotopy equivalence classes of closed
k-surfaces can be used in classifying simple closed k-surfaces in Z3

This paper is organized as follows. Section 2 provides basic notions.
Section 3 investigates some properties of a closed k-surface and a relative
k-homotopy, k € {18,26}. Section 4 establishes a commutative monoid
of the set of k-isomorphism classes of closed k-surfaces with an operation
derived from a digital connected sum, k € {18,26}. Section 5 shows that
with some hypothesis the set of k-homotopy equivalence classes of closed
k-surfaces with an operation forms a commutative monoid, k € {18, 26}.
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2. Preliminaries

In order to make this paper self-contained, we recall some necessary
terminology from earlier literature in [1, 3, 25, 28]. Since a closed k-
surface in Z3 can be studied with a digital k-graph structure in Z3, we
now use the k(m,n) (or k,,)-adjacency relations of Z",n € N [8] (see
also [12]):

Let m be a positive integer with 1 < m < n. Then we say that two
distinct points p = (p1,p2,--- ,pn) and ¢ = (q1,q2, " ,qn) € Z" are
k(m,n)-adjacent according to m if

(1) there are at most m distinct indices 7 such that |p; — ¢;| = 1; and
(2) for all indices i such that |p; — ¢;| # 1, pi = ¢:-

In terms of this operator the number m determines one of the k(m,n)-
adjacency relations of Z", we may use k := k(m,n). Precisely, by N} (p)
we denote the set of the points ¢ € Z™ which are k,,-adjacent to a given
point p and the number k := k(m,n) is the cardinal number of N} (p).
Consequently, we obtain the following k-adjacency relations of Z™ [8]
(see also [9, 15]).

Proposition 2.1. [19} k= k;(m7n) — Z”_l on—icm

mn __
i—r—n "', where C' =

n!
(n—1)! !

In general, for a subset X C Z™ with k-adjacency, n € N, we call it a
digital space with k-adjacency, denoted by (X, k), and further, (X, k) is
usually considered in a digital picture (Z", k, k, X) [27, 28], k and k are
related to the adjacencies of X and Z"™ — X, respectively. In this paper,
we assume (k, k) € {(k,2n), (2n,3"—1)}. Hereafter, we call briefly (X, k)
a space if not confused. Owing to the digital k-connectivity paradox in
[26], we commonly assume that k # k except for the case (Z,2,2, X).
For a,b € Z with a < b, the set [a,b]z = {n € Z|a < n < b} is called a
digital interval [3].

A digital space (X, k) is a digital graph G, [13] (see also [15, 16, 18]).
To be specific, the vertex set of G, can be considered as the set of points
of X. Besides, two points x1,x2 € X determine a k-edge of Gy, if and
only if x1 and x5 are k-adjacent in X.

A k-path from z to y in X is a sequence (z = xg,x1,T2, " * , Tm—1,
Zm = y) in X such that each point z; is k-adjacent to ;11 for m > 1
and i € [0,m—1]z. Then, the number m is called the length of this path
[26]. If 29 = @y, then the k-path is said to be closed [26]. A set of lattice
points is k-connected if it is not a union of two disjoint non-empty sets
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that are not k-adjacent to each other [25]. Thus a singleton set with k-
adjacency is k-connected. For a digital space (X, k), two distinct points
x,y € X are k-connected [22] if there is a k-path from z to y in X. For
an adjacency relation k of Z™, a simple k-path with m elements in Z"
is assumed to be a sequence (xi)ie[()’m,l]z C Z" such that z; and z; are
k-adjacent if and only if either j =i+ 1 or i = j + 1 [25]. Furthermore,
a stmple closed k-curve with [ elements in Z" is a sequence ($i)ie[0,l—1]z
derived from a simple k-curve (z;)ic[o,), With zo = z;, where z; and
xj are k-adjacent if and only if j = i+ 1(modl) or i = j + 1(modl)
[25]. By SC,?’Z we denote a simple closed k-curve with [ elements in
Z" neN-—{1} [12].

Motivated by both the digital continuity of [28] and the (ko,k1)-

continuity of [2], we say that a function f : X — Y is (kg, k1)-continuous
at a point xg € X.
Let (X, ko) and (Y, k1) be spaces in Z™ and Z™ | respectively. A function
f X — Y is (ko,k1)-continuous at a point xg € X if and only if
f(Nko(xO’ 1)) - Nk1 (f(xo)a 1)7 where Nko(xﬂa 1) C X and Nkl (f(x())v 1)
cY.

Unlike the pasting property of classical continuity in topology, the

(ko, k1)-continuity has some intrinsic features [24]: (ko, k1)-continuity
has the almost pasting property instead of the pasting property of classical
topology.
For a k-adjacency relation of Z™, we recall that a simple closed k-curve
with [ elements in X C Z" is the image of a (2, k)-continuous function
f:]0,1 — 1]z — X such that f(i) and f(j) are k-adjacent if and only if
either j = ¢+ 1(modl) or i = j + 1(modl) [26]. Thus, we may use the
notation SC,:,L’Z = (€i)iefo,1—-1] With f(i) = ¢; [12].

Recently, digital graph versions of (ko, k1)-continuity, (ko, k1)-homeo-
morphism, (ko, k1)-covering, and (kg, k1)-homotopy in digital topology
were established in [13]. Consequently, we may use the term a (ko, k1)-
isomorphism as in [4, 13] rather than a (ko, k1)-homeomorphism as in

[3]:

Definition 1. [13] (see also [4]) For two spaces (X, ko) in Z™ and
(Y k1) in Z™, amap h : X — Y is called a (ko, k1)-isomorphism if h
is a (ko, k1)-continuous bijection and further, h=! 1 Y — X is (ki ko)-
continuous. Then, we use the notation X =~ ) Y. If ng = ny and
ko = k1, then we call it a ko-isomorphism and use the notation X ~y, Y
or X =Y if not confused.
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3. Some properties of a simple closed k-surface in Z3, k €
{18,26}

For a space (X, k) and its subset A, we call ((X, A), k) a digital space
pair with k-adjacency. Furthermore, if A is a singleton set {xg}, then
(X, x0) is called a pointed space [3]. Motivated by the k-homotopy of
[3], the homotopy relative to a subset A C X was established in [9] and
has been used in studying digital spaces in relation with a strong k-
deformation retract, a k-homotopic thinning [10] (see also [16]), and a
k-contractibility [17]. As special case of the (kg, k1)-homotopy in [3], we
use the following k-homotopy in this paper.

Definition 2. [9] (see also [16]) Let (X, k) and (Y, k) be spaces in Z",
and AC X. Let f,g: X — Y be (k,k) (briefly, k)-continuous functions.
Suppose the existence of bothm € N and a function F : X x[0,m|z — Y
such that

o for allz € X, F(z,0) = f(x) and F(z,m) = g(x);

e for all x € X, the induced function F, : [0,m]z — Y defined by

F,(t) = F(x,t) is (2, k)-continuous for all t € [0, m]z;

e for all t € [0, m]z, the induced function F; : X — 'Y defined by

Fy(x) = F(x,t) is k-continuous for all x € X.

Then, F is called a k-homotopy between f and g, and f and g are k-
homotopic in Y.

e Furthermore, for all t € [0, m]z, then suppose the induced map F; on
A is a constant which is the prescribed function from A to Y. In other
words, Fi(x) = f(x) = g(x) for all x € A and for all t € [0, m]z.

Then, we call F a k-homotopy relative to A between f and g, and
we say that f and g are k-homotopic relative to A in Y denoted by

f ~kerera g-

In Definition 2, if A = {z¢} C X, then we say that F' is a pointed
k-homotopy at {zo} in [3].

Definition 3. [3] If, for some xy € X, 1x is k-homotopic to the
constant map with space xg relative to {zo}, then we say that (X, zg)
is pointed k-contractible.

Indeed, the notion of k-contractibility is slightly different from both
the contractibility in Euclidean topology [3, 12] and the contractibility
of [3].

In classical topology, the notions of interior and exterior have been
essentially used in studying a topological space. By analogy, we obtain
the following from the view point of digital topology.
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Definition 4. [9] Let ¢* = (zo,x1, - ,zn) be a closed k-curve in
Z2. Let ¢ be the complement of ¢* in Z?. A point = of ¢ is said to be
interior to ¢* if it belongs to the bounded k-connected component of ¢*.
Otherwise, it is called exterior to ¢*. The set of all interior(respectively
exterior) points to ¢* is denoted by Int(c*)(respectively Ext(c*)).

We now recall the terminology for the study of a digital k-surface in
Z3. A point x € X C Z3 is called a k-corner if x is k-adjacent to two and
only two points y, z € X such that y and z are k-adjacent to each other
[1]. The k-corner z is called simple if y and z are not k-corners and if
is the only point k-adjacent to both y, z. X is called a generalized simple
closed k-curve if what is obtained by removing all simple k-corners of X
is a simple closed k-curve [1]. For a k-connected space (X, k) in Z3, we
recall | X|* = Njg(z) N X, Nyg(z) = {2/|z and 2’ are 26-adjacent}. In
other words, |X|* = Nag(z,1) — {z} [9, 10, 14].

By using the above terminology, the notion of closed k-surface was
introduced:

Definition 5. [1] Let (X, k) be a space in Z3, and X = Z? — X.
Then, X is called a closed k-surface if it satisfies the following:
(1) In case (k, k) € {(26,6), (6,26)}, then
(a) for each point x € X, |X|* has exactly one k-component k-adjacent
to x;

(b) | X|* has exactly two k-components which are k-adjacent to x; we
denote by C** and D*% these two components; and
(¢) for any point y € Ni(z) N X, Ni(y)NC** # () and Ni,(y) N D** # 0,
where Ni(z) = Nj(z) U {z} and Nj(z) = {2'|x and 2’ are k—
adjacent}.
(2) In case (k, k) = (18,6), then
(a) X is k-connected,
(b) for each point x € X, | X|* is a generalized simple closed k-curve.
In (1) and (2), for k € {18,26} if the image | X|* is a simple closed
k-curve, then X is called simple.

Obviously, we observe that each closed 6-surface is simple (see M SSg
in Figure 1). Furthermore, in this paper we will not consider the ori-
entability of a closed k-surface in [27].

The paper [14] establishes the following:

MSS515 ~13 (MSCS X {1}) U (Int(MSCg) X {0,2}), 31
MSSig =18 (MSCE x {1}) U (Int (M SCY) x {0,2}), (3:-1)
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where ‘x’ means the Cartesian product (or digital product) and
MSCg = ((0,0),(1,-1),(2,-1),(3,0),(2,1),(1,1)) and,
MSC{ = ((0,0),(1,1),(0,2),(—1,1)).

2,4 2,8 2,4 2,6
sc? sc? sc? SC;
022
C2
ol
¢
(0,0,0)
3,4 _

FiGURE 1. Simple closed 6-, 18-, and 26-surfaces from
[9, 14, 15] with (6,26)-and (k, 6)-structures, k € {18,26}

Remark 3.1. The space M SSig in (3.1) can be represented as the
set
{(1,0,0), (0, %1,0), (0,0, 1)} in (Z3,18,6, MSSlg).

In [14], it turns out that M SS;g is a simple closed 18-surface not
18-contractible (see Figure 1) and further, MSS{g is a simple closed
18-surface which is 18-contractible. In this paper each of MSS1g and
M SC'g is considered with an (18,6) or a (26, 6)-structure instead of the
others in [6].

Both 18-surfaces MSSis and MSS|¢ have some useful properties, as
follows.

Lemma 3.2. (1) M SS}, is unique up to k-isomorphism, k € {18,26}.
(2) MSSis is also a simple closed 26-surface not 26-contractible.
(3) M SSig is also a simple closed 26-surface which is 26-contractible.
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Proof: (1) Trivial.

(2) Since M SSyg is obviously a simple closed 26-surface with a (26, 6)-
structure and further, there is no 26-homotopy on M S'S1s making 1,755,
26-homotopic to a constant map cy,,y, where p; is an arbitrary point in
M SS1g. Thus, M SS1g cannot be 26-homotopy equivalent to a singleton
in M SS1g, the proof is completed.

(3) MSSis is obviously a simple closed 26-surface with a (26, 6)-
structure. Furthermore, M SS1g is 26-contractible due to the 18-contract-

ibility of M SSig in [14]. O
Hereafter, by Lemma 3.2, we may use M.SSig and M SS}g as MSSa

and MSShg, respectively. Namely, we may use MSSig := MSSy and
MSS'g := MSSh in this paper.

4. Commutative monoid of the set of k-isomorphism classes
of simple closed k-surfaces in Z3

In relation with the establishment of a digital version of a connected
sum, we have used the following spaces
MSCg == MSC§ U {q} and MSC§ := MSCg U {z1,z2}, come from
MSCL and MSCs in Z? [9, 14]. MSC{* has been used in establishing
a digital connected sum. In this section we denote by SC} the set of all
simple closed k-surface X C Z2 in which each point 2 € X has a subset
Ni(z,1) C X satisfying Ni(x, 1) =8 MSCE', k € {18,26}.

In addition, we obtain the following:

(1) MSC§ == MSCgU Int(MSCS)
where M SC{ =g {wy = (0,0), w; = (—1 ) =(—-2,0),ws = (—1,-1)}.

(2) MSCE := MSCs U Int(MSCs) ~ g, (p 1) CZ2,p€ Z2,
where MSCys =g {cop = (0,0),c1 = (1, ) = (1,2),c3 = (0,3),¢c4 =
(_17 2)7
C5 = (_17 1)}

Since a simple closed k-surface in SC has a subset A C X satisfying
A =8 MSCY, k € {18,26}, hereafter, we may take a subset A ~ g
M SCY for the digital connected sum of Definition 6 below. Thus we can
establish a commutative monoid structure of the set of k-isomorphism
classes of simple closed k-surfaces in SCj, with an operation derived from
the digital connected sum, k € {18,26}. As a special case of the digital
connected sum in [9], we introduce the following which is suitable for an
establishment of a monoid of the set of k-isomorphism classes of simple
closed k-surfaces in SC}.
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Definition 6. Let X and Y be simple closed k-surfaces in SCy, k €
{18,26}. Consider A’ C A C X and take A — A" C X, where A =)
MSCg and A" ~g,5) Int(MSCg). Let f : A — f(A) CY be a k-
isomorphism. Remove A" and f(A’) from X and Y, respectively. Then,
the disjoint union of X' and Y’ induced from the identification x with
f(z) € Y for all z € A — A’ is taken, denoted by X#Y, where X' =
X —-A,Y =Y — f(A) and any two points p € X' C XY and
qgeY' C XtY withp,q ¢ X{Y — f(A— A’) are not 26-adjacent in X{Y .

Remark 4.1. In relation with the conditions (a) and (b) of (1), and
(b) of (2) in Definition 5, we need the statement that any two points
pe X' C XtY and q € Y C XtY with p,q ¢ X§Y — f(A— A’) are not
26-adjacent in X§Y of Definition 6.

In order to show that a digital connected sum is essentially used in
establishing a monoid structure of the set of k-isomorphism classes of
simple closed k-surfaces in SCy, k € {18,26}, we use the following:

Example 4.2. (1) M SSosM S Sy ~a6 M SSa.
(2) MSSLtMSShs ~o5 MSShe.

Proof: (1) We can consider MSSysMSSh; with 26-adjacency in
(ZB, 26, 6, MSSQGtLMSSéG) so that MSS%ﬂMSSé‘S ~926 MSSQ(; [9]
Precisely, take two subsets, {po,p1,p9, 05,07} = A C MSSas (see Fig-
ure 1) and {cg, c1, 2, ¢3,ca} := B C MSShg (see Figure 1) which are 26-
isomorphic to each other. Then, consider a 26-isomorphism f: A — B
such that

f(po) = co, f(p1) = c1, f(po) = ca, f(ps) = c3, f(pr) = ca

and remove the two points pg € M SSy and co = f(po) € MSSh.
Gluing the two remaining sets MSSas — {po} and MSSh; — {co}, we
obtain MSSdMSSh by using the map f so that MSSydMSSh; is
still 26-isomorphic to the space M.SSy.
By the same method as above, we obtain M.SS1gfMSS|g ~15 MSSig is
also established with 18-adjacency in (Z3, 18,6, MSS188MSSig).

(2) By the same method as Example 4.2(1), the proof is completed.

O

By the same method as above, we obtain that M.SSogiM S S is
another simple closed 26-surface. While there are many types of M5 Sa
#M S S5, those are 26-isomorphic to each other.

Consequently, we obtain the following:

Theorem 4.3. Let X and Y be simple closed k-surfaces in SCy,
k € {18,26}. Then X1Y is a simple closed k-surface in SCj.
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Let X, Y, and Z be simple closed k-surfaces in SCy, k € {18,26}.
Even though X#Y and (XY )fZ need not be equal to Y#X and X4(Y1Z2),
respectively, XY and (X{Y)#Z are k-isomorphic to Y#X and X§(Y17),
respectively. Thus we observe that the set of k-isomorphism classes of
simple closed k-surfaces in SCj forms a commutative monoid with an
operation induced from the digital connected sum of Definition 6. For a
simple closed k-surface X in SC}, consider the k-isomorphism class of
X, k € {18,26}, i.e.,

[X] = {X/|X ~ X'}

Lemma 4.4. Let X,Y,Z, and W be simple closed k-surfaces in
SCr,k € {18,26}. If X =~ Y and Z =~ W, then X{Z =~ Y{W in
SCy.

Proof: Let hy : X — Y be a k-isomorphism and let hy : Z — W be
a k-isomorphism. Since each of X,Y,Z, and W has a subset A =~ g)
MSC{, we obtain both XtZ and Y#W with k-adjacency, k € {18,26}.
For any k-isomorphism, its restriction map on any subset of the domain
of the given k-isomorphism is also a k-isomorphism [14].

For A C X, consider f: A — f(A) C Z which is a k-isomorphism of
Definition 6 related to X§Z, and
i1 : X—A" — XtZ which is an inclusion map, where A’ =;, g) Int(M SCy),
and A’ C A and further,
io: Z — f(A") — X$Z which is an inclusion map.

Besides, for A C Y consider g: A — g(A) C W
which is a k-isomorphism of Definition 6 related to Y{W and further,
j1:Y — A" — Y#W which is an inclusion map, and
jo : W —g(A") — Y4W which is an inclusion map.

Then we have a map h : X{Z — YW defined by

jrohilx_aoiyt(t) if teX—-A CXtz;
jaoholz_panoiz'(t) if teZ— f(A")C X1z,

where A" =, ) Int(MSCg) and A" C A. Then h is a k-isomorphism,
which means that X§Z =~ Y{W. O
By Lemma 4.4 we obtain the following:

h(t) =

Definition 7. Let X and Y be simple closed k-surfaces in SCy, k €
{18,26}. Then we define [X] - [Y] = [X{Y].

By Definition 7, Remark 3.1, and Lemma 4.4, we obtain the following:
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Theorem 4.5. The set of k-isomorphism classes of simple closed
k-surfaces in SC} is a commutative monoid with the ‘-’ operation in
Definition 7, k € {18,26}.

Proof: Let us prove the following: Let X, Y, and Z be simple closed
k-surfaces in SCy, k € {18,26}, then we suffice to prove the following:

(1) (X]- V) 12] = [X] - (V] 12)).

(2) [MSS)] - [X] = [X] and [X] - [M5S}] = [X].

(3) [X] - V] = [¥] - [X).

Let us now prove (1). We suffice to prove that (X#Y)4Z =, X$(Y12),
k € {18,26}. By Definition 6, consider a subset A C X,Y’, and Z such
that A =5y MSCg*. While (X£Y)4Z need not be equal to X#(Y12),
they are k-isomorphic to each other by the similar method as that of
Lemma 4.4, which proves the assertion (1).

(2) Since MSSI#X =~ X =~ X§MSS) via A(C MSS)]) =g
MSCE C X, k € {18,26}, which proves the assertion (2).

(3) Obviously, by Definition 6, consider two k-isomorphisms f : A —
f(A)and f=': f(A) — A. Then, X{Y is k-isomorphism to Y$X, which
proves the assertion (3). O

By Theorem 4.5 (2), it turns out that [MSS}] acts the identity ele-
ment under the operation ‘-’ of Definition 6, k € {18,26}.

5. Commutative monoid of the set of k-homotopy classes of
closed k-surfaces

The notion of k-homotopy equivalence has been introduced in [11]
and has been used in classifying discrete objects with a k-homotopy
equivalence; however there are insufficient presentations of some topics
n [11]. Thus, the paper [23] contains the corrected one.

Definition 8. [11] (see also [23]) For two discrete topological spaces
with k-adjacency (X, k) and (Y, k) in Z", if there are k-continuous maps
h:X —-Y andl:Y — X such that loh >~} 1x and hol ~ 1y, then
the map h : X — Y is called a (digital) k-homotopy equivalence. And
we use the notation X ~p.p.. Y.

In Section 5, we still need to take the subset A =~ g) MSCE to
establish a commutative monoid of the set of k-homotopy equivalence
classes of closed k-surfaces in Z* with an operation derived from a digital
connected sum of Definition 6.

Unlike the digital connected sum of Definition 6, there are some diffi-
culties in establishing a digital connected sum of two closed k-surfaces X



152 Sang-Fon Han

and Y which are not simple because there may not be subsets A in both
X and Y such that A is (k,8)-isomorphism to MSCg. Furthermore,
we may also meet an obstacle to the establishment of X#Y4Z for some
closed k-surfaces X,Y, and Z in Z3. Thus, in this section we consider
the set of only closed k-surfaces X C Z2 having a subset A C X such
that A := Ni(z,1) =g MSC{ and establishing the associativity of
the commutative monoid of the set of k-homotopy equivalence classes of
closed k-surfaces in Z3, k € {18,26}. Then we denote by C'Sj, the above
set. Some k-homotopic properties of X € C'S are now investigated in
relation with the digital connected sum of Definition 6.

In CSg, for a closed k-surface X, consider the k-homotopy equivalence
class of X as follows.

[(X] = {X'|X ~pne X'}

Using both an argument similar to that given for the proof of Lemma 4.4,
Remark 4.1, and a k-homotopy equivalence instead of a k-isomorphism
of Lemma 4.4, we obtain the following:

Lemma 5.1. In Z3, let X, Y, Z, and W be spaces in CSj. If
X L.hee Y and 7 ~k-he W, then XﬁZ ~k-he YﬁW

By Lemma 5.1 and Definitions 6 and 7, we obtain that for X,Y €
C'Sk, we define [X] - [Y] to be [X{Y].

Obviously, for X,Y, and Z in CSk, X{Y and (XY )fZ need not be
equal to Y#X and X{(Y§Z), respectively. Meanwhile, we obtain the
following:

Theorem 5.2. Let X, Y, and Z be closed k-surfaces in CSy, k €
{18,26}. Then we obtain the following:

(1) ((X]-[Y]) - [2] = [X] - ([Y] - [Z]), k € {18,26}.

(2) [MSS}] - [X] = [X] and [X] - [MSS}] = [X].

(3) [X]-[Y]=[Y]-[X].

Proof: (1) Since (X#Y)iZ is k-homotopy equivalent to X#(Y1Z2),
k € {18,26}, the proof is completed.

(2) Since MSS]/CﬁX ~k-he X k-he XﬁMSS;C by using A(C MSSIQ) %(k"g)
MSC§ C X, k € {18,26}, the proof is completed.

(3) Obviously, XfY and Y#X are k-homotopy equivalent to each
other, the proof is completed. O

By Theorem 5.2(2), it turns out that [MSS;] is the identity element
under the operation ‘-’ in Definition 7, k € {18,26}.
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Remark 5.3. (Correcting) In [21], since the two objects U; of Figure
6 and Uy of Figure 7 are misprinted at the point (0,0) € Z2. Thus they
can be corrected, as follows (see Figure 2). With the same criterion, the
objects E of Figure 1 in [20] should be corrected at the point (0,0) € Z>
(motivated from Figure 4 of [12]).

(1,4) 1L)g
Nyt
(56, 1) ] 2o 5 03
©0 ”"(&D ®
6,-1) i
V
1,-4) @
U1 of Fig6in [21] Eq of Fig 1in [20]
1.4)
Uq of Fig 7in [21] 41 P
---(0,0),
3 (@)
A
1%4)

FIGURE 2. Correction of objects in [20, 21]
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