• Title/Summary/Keyword: digital holography

Search Result 176, Processing Time 0.032 seconds

Digital holographic data storage using pixel matching (픽셀-매칭을 이용한 디지털 홀로그래픽 정보 저장)

  • Kim, Jung-Hoi;Kim, Nam;Lee, Kwon-Yeon;Jeon, Seok-Hee;Ban, Jae-Kyung
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.58-59
    • /
    • 2000
  • 현재 고속 판독률(fast-readout-rate)과 고밀도(high-capacity) 디지털 데이터 정보저장을 위해 불륨 홀로그래피(volume holography) 기술에 많은 관심이 집중되고 있다. 이러한 특징들은 다중 데이터 페이지(mulitple data page)들을 중첩(superposition)시킴으로서 이루어지며, 각각의 페이지들은 100만 픽셀이상의 정보를 가지고 page/msec의 속도로 병렬 엑세스가 가능하다. 최근 연구논문에서는 10,000 페이지의 충첩 홀로그램,$^{[1]}$ 데이터 추출을 위한 디지털 처리기술의 사용,$^{[2]}$ 광학적인 데이터 접근$^{[3]}$ , 박막 매질을 이용한 높은 면적 밀도(10bits/$mu extrm{m}$$^2$)$^{[4]}$ 등이 구현되었다. 그러나 이들 실험들은 대량의 병렬 데이터 페이지들의 실질적인 광-전 변환(optical-electrical conversion)을 구현하지 못해 고밀도와 빠른 접근 속도를 동시에 만족시키지 못하고 있다. 이러한 원인중에 하나로 출력의 CCD 픽셀 격자위에 입력의 SLM픽셀 격자를 정확하게 결상시키는데 어려움이 있기 때문이다. (중략)

  • PDF

Visualization of weld plume using high-speed holography (고속 홀로그래피에 의한 용접 플룸 거동의 가시화)

  • 백성훈;박승규;김민석;정진만;김철중
    • Journal of Welding and Joining
    • /
    • v.17 no.1
    • /
    • pp.71-76
    • /
    • 1999
  • The real-time holographic interferometer with digital high-speed camera is applied to the experimental study of laser induced plasma/plume in pulsed Nd:YAG laser welding. A pulsed Nd:YAG laser with 1.2 kW average power is applied to generate laser induced plume. The recording speed of the high-speed camera is 3,000 f/s. The high speed photographs of weld plume without another visualization method, are compared with the visualization photographs with holographic interferometer. The radiation intensity from the laser induced plume is recorded by the high speed photographs, which fluctuated during laser radiation and disappeared after laser end. The density distribution of the plume is recorded by the holographic visualization method. The experimental results show the process of generation of the laser induced plasma/plume, and give the feasibility of quantitative measurement of laser induced plume in laser welding.

  • PDF

Advanced Flow Visualization Techniques for Diagnosing Microscale Biofluid Flows (미세 생체유동 해석을 위한 첨단 유동가시화기법)

  • Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Recently microscale biofluid flows have been receiving large attention in various research areas. However, most conventional imaging techniques are unsatisfactory due to difficulties encountered in the visualization of microscale biological flows. Recent advances in optics and digital image processing techniques have made it possible to develop several advanced micro-PIV/PTV techniques. They can be used to get quantitative velocity field information of various biofluid flows from visualized images of tracer particles. In this paper, as new advanced micro-PIV techniques suitable for biofluid flow analysis, the basic principle and typical applications of the time-resolved micro-PIV and X-ray micro-PIV methods are explained. As a 3D velocity field measurement technique for measuring microscale flows, holographic micro-PTV method is introduced. These advanced PIV/PTV techniques can be used to reveal the basic physics of various microscale biological flows and will play an important role in visualizing veiled biofluid flow phenomena, for which conventional methods have many difficulties to analyze.

Hologram Generation of 3D Objects Using Multiple Orthographic View Images

  • Kim, Min-Su;Baasantseren, Ganbat;Kim, Nam;Park, Jae-Hyeung
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.269-274
    • /
    • 2008
  • We propose a new synthesis method for the hologram of 3D objects using incoherent multiple orthographic view images. The 3D objects are captured and their multiple orthographic view images are generated from the captured image. Each orthographic view image is numerically overridden by the plane wave propagating in the direction of the corresponding view angle and integrated to form a point in the hologram plane. By repeating this process for all orthographic view images, we can generate the Fourier hologram of the 3D objects.

Enhancing Document Security with Computer Generated Hologram Encryption: Comprehensive Solution for Mobile Verification and Offline Decryption

  • Leehwan Hwang;Seunghyun Lee;Jongsung Choi
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.169-175
    • /
    • 2024
  • In this paper, we introduce a novel approach to enhance document security by integrating Computer Generated Hologram(CGH) encryption technology with a system for document encryption, printing, and subsequent verification using a smartphone application. The proposed system enables the encryption of documents using CGH technology and their printing on the edges of the document, simplifying document verification and validation through a smartphone application. Furthermore, the system leverages high-resolution smartphone cameras to perform online verification of the original document and supports offline document decryption, ensuring tamper detection even in environments without internet connectivity. This research contributes to the development of a comprehensive and versatile solution for document security and integrity, with applications in various domains.

A Study on the Aesthetic Characteristics of Contemporary Fashion that Uses Artificial Light (인공적인 빛을 활용한 현대 패션의 미적 특성 연구)

  • Jung, Hyun;Geum, Key-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.58 no.4
    • /
    • pp.113-127
    • /
    • 2008
  • Artificial lights have effected the changes of art and fashion concepts as well as human life since the invention of electric light bulb in late 19th century. Artist and designer have had more interested in these artificial lights as the development of digital technology and the change of millennium and they have tried to apply the lights into their works. The purpose of this study is to analyze the aesthetic characteristics of contemporary fashion design using artificial light as a medium. Artificial light for fashion design means the light using luminescent material like phosphorescent and fluorescent materials or in combination with electroluminescent digital technology or the light that can be perceived as images when light projects from media using a light projector or other digital equipment. Fashion design using this light type can change colors or form temporarily and it can playa role as a gadget for hm or as equipment to provide information much as a computer monitor does. And designer can create virtual patterns on the surface of clothes, or virtual fashion like a 3-dimensional holography in empty space. In these fashion designs, the virtual image of light is substituted for physical formative elements in fashion, and the viewer can experience an ambiguity between reality and virtuality. The results of the study were as follow; The formative characteristics of those fashion designs were identified as visibility, indeterminacy, integration and virtuality. And they reflected the internal meanings; the persue of protection and safety, the search for experiment and innovation, the will for interaction and communication and the desire for the deviation and fun.

Numerical Reconstruction of Holographic Stereogram with Radial Distortion (방사 왜곡을 포함하는 홀로그래픽 스테레오그램의 수학적 복원)

  • Park, Jiyong;Kang, Hoonjong;Hong, Sunghee;Jung, Kwangmo;Lee, Seunghyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.10
    • /
    • pp.911-919
    • /
    • 2013
  • Evaluation of the effect of radial distortion for a holographic stereogram demands conducting an experiment which comprises rendering of a 3D obejc, acquisition of perspective images, rearrangement of the acquired images for hogel images and quality assessment of the observing image reconstructed from the holographic stereogram. We propose numerical implementation of this evaluation by a specially developed algorithm for modeling of all required steps. The modeling is done by using a numerical model of an optical engine for generation of radially distorted hogel images at various degrees of distortion. The distorted images are used to form the holographic stereogram and to make the numerically reconstructed images from the holographic stereogram which are observed by an observer at desired location. The reconstructed images are compared by using PSNR.

Design and Implementation of Game for Learning Game Production Principles: Centering on Scratch Language (게임 제작 원리 학습을 위한 게임의 설계 및 구현 : 스크래치 언어를 중심으로)

  • Lee, Hong-Sub;Jeong, Hyung-Won;Kim, Young-Kyo
    • Journal of Digital Convergence
    • /
    • v.14 no.5
    • /
    • pp.403-410
    • /
    • 2016
  • Computer game is a result of integration of various academic areas, and the production of computer game requires knowledge and experience from various areas. This study demonstrates a game production process using Scratch. The intent was to experience the game development process and the production principle through actually building the core functions of a game using Scratch. As such, the computer game production principle was understood and it was made possible to learn more easily and more enjoyably the functions of multimedia and programming necessary for the production process. As the result, the learning of game production principles using Scratch was found to enhance the interest of the learner, and help with the understanding of game structure and learning software/programming language.

A Study on the Digital Holographic Image Acquisition Method using Chroma Key Composition (크로마키 합성을 이용한 디지털 홀로그래피 이미지 획득 방법 연구)

  • Kim, Ho-sik;Kwon, Soon-chul;Lee, Seung-hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.313-321
    • /
    • 2022
  • As 5G is getting developed, people are getting interested in immersive content. Some predicts that immersive content may be implemented in real life such as holograms, which were only possible in movies. Holograms, which has been studied for a long time since Dennis Gabor published the basic theory in 1948, are constantly developing in a new direction with digital technology. It is developing from a traditional optical hologram, which is produced by recording the interference pattern of light to a computer generated hologram (CGH) and a digital hologram printer. In order to produce a hologram using a digital hologram printer, holographic element (Hogel) image must first be created using multi-view images. There are a method of directly photographing an actual image and a method of modeling an object using 3D graphic production tool and rendering the motion of a virtual camera to acquire a series of multi-view images. In this paper, we propose a new method of getting image, which is one of the visual effect, VFX, producing multi-view images using chroma key composition. We shoot on the green screen of actual object, suggest the overall workflow of composition with 3D computer graphic(CG) and explain the role of each step. We expected that it will be helpful in researching a new method of image acquisition in the future if all or part of the proposed workflow to be applied.

Fast Hologram Generating of 3D Object with Super Multi-Light Source using Parallel Distributed Computing (병렬 분산 컴퓨팅을 이용한 초다광원 3차원 물체의 홀로그램 고속 생성)

  • Song, Joongseok;Kim, Changseob;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.20 no.5
    • /
    • pp.706-717
    • /
    • 2015
  • The computer generated hologram (CGH) method is the technology which can generate a hologram by using only a personal computer (PC) commonly used. However, the CGH method requires a huge amount of calculational time for the 3D object with a super multi-light source or a high-definition hologram. Hence, some solutions are obviously necessary for reducing the computational complexity of a CGH algorithm or increasing the computing performance of hardware. In this paper, we propose a method which can generate a digital hologram of the 3D object with a super multi-light source using parallel distributed computing. The traditional methods has the limitation of improving CGH performance by using a single PC. However, the proposed method where a server PC efficiently uses the computing power of client PCs can quickly calculate the CGH method for 3D object with super multi-light source. In the experimental result, we verified that the proposed method can generate the digital hologram with 1,5361,536 resolution size of 3D object with 157,771 light source in 121 ms. In addition, in the proposed method, we verify that the proposed method can reduce generation time of a digital hologram in proportion to the number of client PCs.