• Title/Summary/Keyword: digital hologram

Search Result 237, Processing Time 0.023 seconds

A study on 3D construction expression using a similar hologram (유사 홀로그램을 이용한 3D 건출 표현 연구)

  • Lee, Hyun-Chang;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.361-362
    • /
    • 2021
  • The meaning of hologram is widely used as a similar hologram. The use of holograms has been proposed in many cases. In this paper, we present an outline of similar holograms using up to 3 or 4 facets, and express the similar holograms using the results produced by 3D modeling of the university headquarters building at Wonkwang University. Through this, a virtual building seen by the human eye can be virtually shown in space through a hologram among various methods shown in a virtual space such as AR / VR / MR. Through this study, it is possible to try to construct a new digital contents utilization area by expressing various materials such as buildings or cultural property buildings through hologram.

  • PDF

Improving the quality of light-field data extracted from a hologram using deep learning

  • Dae-youl Park;Joongki Park
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.165-174
    • /
    • 2024
  • We propose a method to suppress the speckle noise and blur effects of the light field extracted from a hologram using a deep-learning technique. The light field can be extracted by bandpass filtering in the hologram's frequency domain. The extracted light field has reduced spatial resolution owing to the limited passband size of the bandpass filter and the blurring that occurs when the object is far from the hologram plane and also contains speckle noise caused by the random phase distribution of the three-dimensional object surface. These limitations degrade the reconstruction quality of the hologram resynthesized using the extracted light field. In the proposed method, a deep-learning model based on a generative adversarial network is designed to suppress speckle noise and blurring, resulting in improved quality of the light field extracted from the hologram. The model is trained using pairs of original two-dimensional images and their corresponding light-field data extracted from the complex field generated by the images. Validation of the proposed method is performed using light-field data extracted from holograms of objects with single and multiple depths and mesh-based computer-generated holograms.

A Hybrid Encryption Technique for Digital Holography using DCT and DWT

  • Choi, Hyun-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.271-275
    • /
    • 2011
  • In this paper, we present a hybrid encryption for a digital hologram which is the most valuable image content. The encryption algorithm is based on a hybrid technique implementation a four-dimensional transform combining the discrete wavelet transform(DWT) and the discrete cosine transform (DCT). The encryption scheme is composed on the basis of the energy distribution. The experimental results showed that encrypting only 0.0244% of the entire data was enough to hide the constants of the hologram. The encryption algorithm expected to be used effectively on the researches on encryption and others for digital holographic display.

A review on several methods for fast generation of digital Fresnel holograms

  • Tsang, P.W.M.
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.2
    • /
    • pp.29-32
    • /
    • 2012
  • Computer generated holography (CGH) is technology for generating holograms of synthetic, three dimensional (3D) objects which may not exist in the physical world. The process, however, requires heavy amount of computation as the resolution of a hologram is significantly higher than that of a typical optical image. This paper reviews four modern techniques for fast generation of digital Fresnel holograms which are important in the development of holographic video systems. The methods that will be described include the virtual window, sub-line, wavefront recording plane (WRP), and the interpolative WRP schemes. These works share the common objective to generate digital Fresnel hologram at a speed that is close to the video frame rate, and with complexity which is realizable with affordable computing and reconfigurable hardware devices. The author will present the principles and realization of these works, as well as some potential area of research in digital holography.

Image Contents Encryption Technique for Digital Hologram Broadcasting Service (디지털 홀로그램 방송을 위한 영상 콘텐츠의 암호화)

  • Ha, Jun;Choi, Hyun-Jun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.818-819
    • /
    • 2013
  • This paper propose a contents security technique for digital holographic display service. Digital holographic video system assumes the existing service frame for 2-dimensional or 3-dimensional video, which includes data acquisition, processing, transmission, reception, and reconstruction. In this paper, we perform the encryption of RGB image and depth-map for such a system. The experimental results showed that encrypting only 0.048% of the entire data was enough to hide the constants of the RGB image and depth-map.

  • PDF

Efficient and Exact Extraction of the Object Wave in Off-axis Digital Holography

  • Jang, Jin;Jeon, Jun Woo;Kim, Jin Sub;Joo, Ki-Nam
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.547-553
    • /
    • 2018
  • In this paper, a new method for spatial filtering in digital holography is proposed and verified by simulations compared to conventional methods. The new method is based on the simultaneous acquisition of two digital holograms, which can be separated by distinct spatial modulation, in a single image. Two holograms are generated by two reference waves, which have different spatial modulation orientations. Then, the overlapping region between the DC term and the object wave in the first hologram can be replaced with a less-overlapping region of the object wave in the second hologram because the whole image contains two holograms where the same objective wave has been recorded. In the simulation results, it is confirmed that the reconstructed image by the new method has better quality than for the original method.

Double Encryption of Digital Hologram Based on Phase-Shifting Digital Holography and Digital Watermarking (위상 천이 디지털 홀로그래피 및 디지털 워터마킹 기반 디지털 홀로그램의 이중 암호화)

  • Kim, Cheol-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • In this Paper, Double Encryption Technology Based on Phase-Shifting Digital Holography and Digital Watermarking is Proposed. For the Purpose, we First Set a Logo Image to be used for Digital Watermark and Design a Binary Phase Computer Generated Hologram for this Logo Image using an Iterative Algorithm. And Random Generated Binary Phase Mask to be set as a Watermark and Key Image is Obtained through XOR Operation between Binary Phase CGH and Random Binary Phase Mask. Object Image is Phase Modulated to be a Constant Amplitude and Multiplied with Binary Phase Mask to Generate Object Wave. This Object Wave can be said to be a First Encrypted Image Having a Pattern Similar to the Noise Including the Watermark Information. Finally, we Interfere the First Encrypted Image with Reference Wave using 2-step PSDH and get a Good Visible Interference Pattern to be Called Second Encrypted Image. The Decryption Process is Proceeded with Fresnel Transform and Inverse Process of First Encryption Process After Appropriate Arithmetic Operation with Two Encrypted Images. The Proposed Encryption and Decryption Process is Confirmed through the Computer Simulations.

High-Performance Computer-Generated Hologram by Optimized Implementation of Parallel GPGPUs

  • Lee, Yoon-Hyuk;Seo, Young-Ho;Yoo, Ji-Sang;Kim, Dong-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.6
    • /
    • pp.698-705
    • /
    • 2014
  • We propose a new development for calculating a computer-generated hologram (CGH) through the use of multiple general-purpose graphics processing units (GPGPUs). For optimization of the implementation, CGH parallelization, object point tiling, memory selection for object point, hologram tiling, CGMA (compute to global memory access) ratio by block size, and memory mapping were considered. The proposed CGH was equipped with a digital holographic video system consisting of a camera system for capturing images (object points) and CPU/GPGPU software (S/W) for various image processing activities. The proposed system can generate about 37 full HD holograms per second using about 6K object points.

VLSI Architecture for Computer-Generated Hologram (컴퓨터 생성 홀로그램을 위한 VLSI 구조)

  • Seo, Young-Ho;Choi, Hyun-Jun;Kim, Dong-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7C
    • /
    • pp.540-547
    • /
    • 2008
  • In this paper, we proposed a new VLSI architecture which can generate computer-generated hologram (CGH) in real-time and implemented to hardware. The modified algorithm for high-performance CGH was introduced and re-analyzed (or designing hardware. from both numerical and visual analysis, the infernal number system of hardware was decided. CGH algorithm and precision analysis enabled to propose a new cell architecture for CGH. The operational sequence was analyzed with the architecture of CGH cell and the characteristics of the modified CGH algorithm, and finally the pipelined architecture and the operational timing were proposed.

Hologram Generation of 3D Objects Using Multiple Orthographic View Images

  • Kim, Min-Su;Baasantseren, Ganbat;Kim, Nam;Park, Jae-Hyeung
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.269-274
    • /
    • 2008
  • We propose a new synthesis method for the hologram of 3D objects using incoherent multiple orthographic view images. The 3D objects are captured and their multiple orthographic view images are generated from the captured image. Each orthographic view image is numerically overridden by the plane wave propagating in the direction of the corresponding view angle and integrated to form a point in the hologram plane. By repeating this process for all orthographic view images, we can generate the Fourier hologram of the 3D objects.