• 제목/요약/키워드: digital hologram

검색결과 235건 처리시간 0.033초

Fresnel 변환영역에서 디지털 홀로그램의 주파수 특성분석 (A Frequency Characteristic Analysis of Digital Hologram in Fresnel Transform Domain)

  • 최현준;서영호;김동욱
    • 한국정보통신학회논문지
    • /
    • 제16권7호
    • /
    • pp.1505-1511
    • /
    • 2012
  • 컴퓨터 생성 홀로그램을 통해 생성된 디지털 홀로그램은 그 데이터량이 방대하기 때문에 저장, 전송 및 처리를 위해서는 데이터량을 줄일 필요성이 있다. 하나의 객체를 나타내기 위한 디지털 홀로그램의 데이터량을 줄이는 가장 효율적인 방법은 부호화를 수행하는 것이다. 본 논문에서는 효율적인 부호화를 위해 디지털 홀로그램을 Fresnel 변환을 도입하여 주파수 영역에서 분석하였다. 이 분석결과는 추후 디지털 홀로그램을 위한 부호화 기술의 개발 시 중요한 데이터가 될 것이다.

깊이정보의 변환 및 합성 기법을 이용한 디지털 홀로그래픽 콘텐츠 저작 (Digital Holographic Contents Manipulation using Convert and synthesize of Depth-map)

  • 최현준;서영호;김동욱
    • 한국정보통신학회논문지
    • /
    • 제17권4호
    • /
    • pp.1010-1019
    • /
    • 2013
  • 최근 완전한 3차원 입체시를 구현하는 홀로그램에 대한 연구가 활발해지고 있으나, 홀로그램은 생성 비용이 많이 들어 콘텐츠의 확보가 어려운 단점을 갖고 있다. 이에 본 논문에서는 생성된 디지털 홀로그램 콘텐츠를 저작하여 새로운 디지털 홀로그램 콘텐츠를 확보하는 방법을 제시한다. 이 방법은 깊이정보를 조작하거나 합성하여 새로운 디지털 홀로그램 콘텐츠를 저작하는 방법이다. 제안한 방법을 검증하기 위해 여러 종류의 깊이정보를 조작하여 위치와 거리를 변경하고, 이를 컴퓨터-생성 홀로그램으로 만든 후 복원한 결과 조작한 위치와 거리에 정확히 물체상이 복원되는 것을 확인하였다.

Fast Generation Methods for Computer-Generated Hologram Using a Modified Recursive Addition Algorithm

  • Choi, Hyun-Jun
    • Journal of information and communication convergence engineering
    • /
    • 제11권4호
    • /
    • pp.282-287
    • /
    • 2013
  • A real-time digital holographic display is the core technology for the next-generation 3DTV. Holographic display requires a considerably large amount of calculation. If generating a large number of digital holograms is intended, the amount of calculation and the time required increase exponentially. This is a significant obstacle in a real-time hologram service. This paper proposes an algorithm that increases the speed of generating a Fresnel hologram by using a recursive addition operation covering the entire coordinate array of a digital hologram. The 3D object designed to calculate the digital hologram uses a depth-map image produced by computer graphics. The proposed algorithm is a technique that performs the computer-generated holography (CGH) operation with only recursive addition of all of the hologram's coordinates by analyzing the regularity between the 3D object and the digital hologram coordinates. The experimental results show that the proposed algorithm increases the operation speed by 70% over the technique using the conventional CGH equation and by more than 30% over the previously proposed recursive technique.

Design and Implementation of Digital Hologram Content Using Modified Depth Information

  • Park, Scott;Choi, Hyun-Jun;Kim, Moon-Seok;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of information and communication convergence engineering
    • /
    • 제12권2호
    • /
    • pp.122-127
    • /
    • 2014
  • This paper proposes a method to manipulate digital hologram contents by manipulating and/or synthesizing the depth information. To synthesize digital holograms themselves in order to create new digital hologram contents. This paper uses both the depth information obtained by converting the disparity information by using a stereo matching method and that obtained by taking pictures with a depth camera. In addition, assuming that digital holograms are created using the computer-generated holography method, we propose a technique for authoring and compositing hologram contents by using either the changes in the three-dimensional positions of objects in the hologram or by combining the objects with other contents by means of changes in the depth information. Further, more than one digital hologram was synthesized to form a hologram. The reconstructed result from the synthesized hologram also contained all the objects in each digital hologram before synthesis at the same positions and distances.

실물에 대한 디지털 홀로그램 고속 생성 (Fast Digital Hologram Generation Using True 3D Object)

  • 강훈종;이강성;이승현
    • 한국통신학회논문지
    • /
    • 제34권11B호
    • /
    • pp.1283-1288
    • /
    • 2009
  • 컴퓨터 그래픽 모델로부터 3차원 정보를 쉽게 추출할 수 있기 때문에, 일반적으로 3차원 컴퓨터 그래픽 모델이 디지털 홀로그래피에 사용되고 있다. 본 논문에서는 depth 카메라를 이용하여 실사로부터 3차원 정보 추출하였고 이를 이용하여 디지털 홀로그램을 생성하였다. Depth 카메라에서 획득된 2차원 실사 영상 및 실물에 대한 깊이 영상은 디지털 홀로그램 생성을 위한 3차원 정보(point cloud) 추출에 사용되었다. 추출된 3차원 정보는 고속 디지털 홀로그램 생성 알고리즘인 코히어런트 홀로그래픽 스테레오그램 방식을 사용하여 홀로그램을 생성하였고, 생성된 디지털 홀로그램은 프라넬(Fresnel) 기반 복원 알고리즘에 의해 복원하였다. 본 방법에 의해 실사에 대한 고속 디지털 홀로그램 생성이 가능함을 제시하였으며, 생성된 디지털 홀로그램으로부터 프라넬 홀로그램의 복원 영상과 같이 선명한 복원 영상을 얻을 수 있었다.

Analysis of Digital Hologram Rendering Using a Computational Method

  • Choi, Hyun-Jun;Seo, Young-Ho;Jang, Seok-Woo;Kim, Dong-Wook
    • Journal of information and communication convergence engineering
    • /
    • 제10권2호
    • /
    • pp.205-209
    • /
    • 2012
  • To manufacture a real time digital holographic display system capable of being applied to next-generation television, it is important to rapidly generate a digital hologram. In this paper, we analyze digital hologram rendering based on a computer computation scheme. We analyze previous recursive methods to identify regularity between the depth-map image and the digital hologram.

HI-SPEED COMPUTER-GENERATED HOLOGRAM ALGORITHM

  • Choi, Hyun-Jun;Seo, Young-Ho;Yoo, Ji-Sang;Kim, Dong-Wook
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.242-245
    • /
    • 2009
  • This paper proposes an algorithm that increases the speed of generating a Fresnel hologram using a recursive addition operation covering the whole coordinate array of a digital hologram. The 3D object designed to calculate the digital hologram used the depth-map image produced by computer graphics (CG). The proposed algorithm is a technique that performs CGH (computer generated hologram) operation with only the recursive addition from the hologram's whole coordinates by analyzing the regularity between the 3D object and the digital hologram coordinates. The experimental results showed that the proposed algorithm increased operation speed by 30% over the technique using the conventional CGH equation.

  • PDF

GPGPU기반의 디지털 홀로그램 콘텐츠의 고속 생성 기법 (High-Speed Generation Technique of Digital holographic Contents based on GPGPU)

  • 이윤혁;김동욱;서영호
    • 디지털산업정보학회논문지
    • /
    • 제9권1호
    • /
    • pp.151-163
    • /
    • 2013
  • Recently the attention on digital hologram that is regarded as to be the final goal of the 3-dimensional video technology has been increased. Digital hologram is calculated by modeling the interference phenomenon between an object wave and a reference wave. The modeling for digital holograms is called by computer generated hologram (CGH) Generally, CGH requires a very large amount of calculation. So if holograms are generated in real time, high-speed method should be needed. In this paper, we analyzed CGH equation, optimized it for mapping general purpose graphic processing unit (GPGPU), and proposed a optimized CGH calculation technique for GPGPU by resource allocation and various experiments which include block size changing, memory selection, and hologram tiling. The implemented results showed that a digital hologram that has $1,024{\times}1,024$ resolution can be generated during approximately 24ms, using 1K point clouds. In the experiment, we used two GTX 580 GPGPU of nVidia Inc.

A Digital Hologram Encryption Method Using Data Scrambling of Frequency Coefficients

  • Choi, Hyun-Jun
    • Journal of information and communication convergence engineering
    • /
    • 제11권3호
    • /
    • pp.185-189
    • /
    • 2013
  • A digital hologram generated by a computer calculation (computer-generated hologram or capture using charge-coupled device [CCD] camera) is one of the most expensive types of content, and its usage is expanding. Thus, it is highly necessary to protect the ownership of digital holograms. This paper presents an efficient visual security scheme for holographic image reconstruction with a low scrambling cost. Most recent studies on optical security concentrate their focus on security authentication using optical characteristics. However, in this paper, we propose an efficient scrambling method to protect a digital hologram. Therefore, we introduce in this paper several scrambling attempts in both the spatial domain and frequency domain on the basis of the results of analyzing the properties of the coefficients in each domain. To effectively hide the image information, 1/4, 1/256, and 1/16,384 of the original digital hologram needs to be scrambled for the spatial-domain scheme, Fresnel-domain scheme, and discrete cosine transform-domain scheme, respectively. The encryption schemes and the analyses in this paper can be expected to be useful in the research on encryption and other works on digital holograms.

Quad-tree Fresnelet 변환을 이용한 디지털 홀로그램 워터마킹 (Digital Hologram Watermarking using Quad-tree Fresnelet Transform)

  • 서영호;구자명;이윤혁;김동욱
    • 디지털산업정보학회논문지
    • /
    • 제9권3호
    • /
    • pp.79-89
    • /
    • 2013
  • This paper proposes a watermarking scheme to protect ownership of a digital hologram, an ultra-high value-added content. It performs pre-defined levels of quad-tree Fresnelet transforms. The relationship among the same-positional-blocks is extracted as the digital pre-watermark. For the relationship, we use properties of a digital hologram that a hologram pixel retains all the information of the object and that the same size of partial holograms reconstructs the same size of object but different in their view points. Also we mix a set of private data with the pre-watermark and the result is encrypted by a block cipher algorithm with a private key. Experimental results showed that the proposed scheme is very robust for the various malicious and non-malicious attacks. Also because it extracts the watermarking data instead of inserting, the watermarking process does not harm the original hologram data. So, it is expected to be used effectively for invisible and robust watermark for digital holograms.