• Title/Summary/Keyword: diffusion annealing

Search Result 339, Processing Time 0.028 seconds

Surface Oxidation of High Strength Automotive Steels during Continuous Annealing, and the Influence of Trace Elements of P,B, and Sb

  • Sohn, Il-Ryoung;Park, Joong-Chul;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.9 no.6
    • /
    • pp.259-264
    • /
    • 2010
  • In continuous hot dip galvanizing process, oxide formation on steel surface has an influence on Zn wetting. High strength automotive steel contains high amount of Si and Mn, where Si-Mn composite oxides such as $Mn_2SiO_4$ or $MnSiO_3$ covers the surface after annealing. Zn wetting depends on how the aluminothermia reaction can reduce the Mn-Si composite oxides and then form inhibition layer such as $Fe_2Al_5$ on the steel surface. The outward diffusion of metallic ions such as $Mn^{2+}$, $Si^{2+}$ in the steel matrix is very important factor for the formation of the surface oxides on the steel surface. The surface state and grain boundaries provide an important role for the diffusion and the surface oxide reactions. Some elements such as P, Sb, and B have a strong affinity for the interface precipitation, and it influence the diffusivity of metallic ions on grain boundaries. B oxide forms very rapildly on the steel surface during the annealing, and this promote complex oxides with $SiO_2$ or MnO. P has inter-reacted with other elements on the grain boundaries and influence the diffusion through on them. Small addition of Sb could suppress the decarburization from steel surface and retards the formation of internal and external selective oxides on the steel surface. Interface control by the trace elements such as Sb could be available to improve the Zn wettability during the hot dip galvanizing.

Thermal Stability of Self-formed Barrier Stability Using Cu-V Thin Films

  • Han, Dong-Seok;Mun, Dae-Yong;Kim, Ung-Seon;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.188-188
    • /
    • 2011
  • Recently, scaling down of ULSI (Ultra Large Scale Integration) circuit of CMOS (Complementary Meta Oxide Semiconductor) based electronic devices, the electronic devices, become much faster and smaller size that are promising property of semiconductor market. However, very narrow interconnect line width has some disadvantages. Deposition of conformal and thin barrier is not easy. And metallization process needs deposition of diffusion barrier and glue layer for EP/ELP deposition. Thus, there is not enough space for copper filling process. In order to get over these negative effects, simple process of copper metallization is important. In this study, Cu-V alloy layer was deposited using of DC/RF magnetron sputter deposition system. Cu-V alloy film was deposited on the plane SiO2/Si bi-layer substrate with smooth surface. Cu-V film's thickness was about 50 nm. Cu-V alloy film deposited at $150^{\circ}C$. XRD, AFM, Hall measurement system, and AES were used to analyze this work. For the barrier formation, annealing temperature was 300, 400, $500^{\circ}C$ (1 hour). Barrier thermal stability was tested by I-V(leakage current) and XRD analysis after 300, 500, $700^{\circ}C$ (12 hour) annealing. With this research, over $500^{\circ}C$ annealed barrier has large leakage current. However vanadium-based diffusion barrier annealed at $400^{\circ}C$ has good thermal stability. Therefore thermal stability of vanadium-based diffusion barrier is desirable for copper interconnection.

  • PDF

Fundamental study on PZT thin film capacitor(I) (PZT박막 Capacitor에 관한 기초연구(I))

  • Hwang, Yu-Sang;Baek, Su-Hyeon;Ha, Yong-Hae;Choe, Jin-Seok;Jo, Hyeon-Chun;Ma, Jae-Pyeong
    • Korean Journal of Materials Research
    • /
    • v.3 no.1
    • /
    • pp.19-27
    • /
    • 1993
  • Abstract The PZT thin film was deposited by usin. RF magnetron sputtering with PZT(52/48) target. The formation of perovskite structure PZT thin film started at 55$0^{\circ}C$ on Si substrate. The AES results showed an oxide layer formed at the between Si and PZT film during the annealing. And, Ti$O_2$ layer appeared at the between TiN and PZT film for the annealing. But, the perovskite phase PZT film was formed after the annealing on the Si$O_2$/Si substarte. The ratio in PZT film was constant across the asdeposited PZT film, but, Pb have diffused into the Si substrate and Si have out-diffused into PZT layer during the post annealing at 75$0^{\circ}C$. The dielectric constants of PZT film indicated about 1300( thickness: 1500$\AA$, at 10KHz) but, the cracks were appeared to surface for annealing.

  • PDF

Determination of Surface Diffusivities of Oxides by the Combined Sintering (소결에 의한 산화물촉매의 표면확산계수의 측정)

  • 문세기;유경옥;김형진
    • Journal of the Korean Ceramic Society
    • /
    • v.14 no.2
    • /
    • pp.73-77
    • /
    • 1977
  • The surface diffusion coefficients for nickel, nickel oxide, cuppric oxide, cobalt oxide, alumina and ferric oxide have been determined at various temperatures using the sintering technique. This investigation is based on the model accounting for the sum of the contribution of volume and surface diffusion to the overall shrinkage rate during the initial stage of sintering. Simultaneous measurements of shrinkages and shrinkage rates of the materials compacts were conducted for various annealing times, the results of which were then correlated to the diffusion coefficient.

  • PDF

The Properties of Nitrogen Implanted Tungsten Diffusion Barrier for Cu Metallization

  • Kim, D.J.;Kim, D.J.;Kim, Y.T.;Lee, J.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.79-82
    • /
    • 1995
  • $N^+$ beam modified diffusion barriers have been proposed for Cu metallization . The crystalline phases of W and Ti thin films change from polycrytalline to amorphous phase by the N ion implantation of 1~$3\times 10^{17}$atoms/$\textrm{cm}^2$. The comparison between these amorphized diffusion barriers and the conventional W and TiN films shows that the amorphized W and Ti diffusion barriers are superior to the conventional w and TiN for protecting the Cu diffusion barriers are superior to the conventional W and TiN for protecting the Cu diffusion at the annealing temperature range $600^{\circ}C$~$800^{\circ}C$ for 30min. This is a worldwidely new and excellent result on the high temperature thermal stability of diffusion barrier.

  • PDF

Color Enhancement of Natural Rubies by Annealing (천연루비의 열처리에 의한 향상 처리 연구)

  • Song Ohsung;Kim Sangyeob
    • Korean Journal of Materials Research
    • /
    • v.15 no.4
    • /
    • pp.252-256
    • /
    • 2005
  • We removed the bluish of the natural ruby successfully by vacuum annealing, and measured the color evolution with annealing time and temperature. We varied the anneal temperature and time $800\~1500^{\circ}C$ and $3\~26$ hrs, respectively. The color evolution of rubies with annealing condition was recorded by a digital camera and a color coordination visible spectrometer. We determined the optimum bluish eliminating annealing condition was $1500^{\circ}C-3hr$, which conserving the natural inclusions. We suggest the bluish shrink with diffusion coefficient of $D=(5\times10^{-3}){\exp}(-200.000/RT)[cm^2/s]$. We propose the color of ruby may be determined as the identical red color if the color difference between two samples are less than 1.0, and the color difference nay be an auxiliary standard to evaluate the color of rubies.

Reaction Synthesis of Annealed Ni-50at%Al Powder Compact (어닐링처리한 Ni-50at%Al 압분체의 연소합성 거동)

  • Cho, Yong-Jae;Lee, Han-Young
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.10
    • /
    • pp.790-796
    • /
    • 2011
  • To reduce the heat released during intermetallic reaction, Ni-50at%Al powder compact has been previously annealed at several conditions before the reaction. The effects of the pre-annealing conditions on the reaction synthesis process have been investigated. Experimental results show that the heat released during the reaction synthesis decreased proportionally with increase of the pre-annealing temperature and duration time. The reaction duration period was significantly increased when the intermetallics were formed in the powder compact during the pre-annealing. This was attributed to the fact that the reaction occurred by solid-state diffusion between the un-reacted elemental atoms and that the $NiAl_3$ phase formed predominantly during pre-annealing.

Diffusion Behaviors and Electrical Properties in the In-Ga-Zn-O Thin Film Deposited by Radio-frequency Reactive Magnetron Sputtering

  • Lee, Seok Ryeol;Choi, Jae Ha;Lee, Ho Seong
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.322-328
    • /
    • 2015
  • We investigated the diffusion behaviors, electrical properties, microstructures, and composition of In-Ga-Zn-O (IGZO) oxide thin films deposited by radio frequency reactive magnetron sputtering with increasing annealing temperatures. The samples were deposited at room temperature and then annealed at 300, 400, 500, 600 and $700^{\circ}C$ in air ambient for 2 h. According to the results of time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy, no diffusion of In, Ga, and Zn components were observed at 300, 400, 500, $600^{\circ}C$, but there was a diffusion at $700^{\circ}C$. However, for the sample annealed at $700^{\circ}C$, considerable diffusion occurred. Especially, the concentration of In and Ga components were similar at the IGZO thin film but were decreased near the interface between the IGZO and glass substrate, while the concentration of Zn was decreased at the IGZO thin film and some Zn were partially diffused into the glass substrate. The high-resolution transmission electron microscopy results showed that a phase change at the interface between IGZO film and glass substrate began to occur at $500^{\circ}C$ and an unidentified crystalline phase was observed at the interface between IGZO film and glass substrate due to a rapid change in composition of In, Ga and Zn at $700^{\circ}C$. The best values of electron mobility of $15.5cm^2/V{\cdot}s$ and resistivity of $0.21{\Omega}cm$ were obtained from the sample annealed at $600^{\circ}C$.

Magnetic Effects of La0.67Sr0.33MnO3 on W-C-N Diffusion Barrier Thin Films

  • Song, Moon-Kyoo;So, Ji-Seop;Shim, In-Bo;Lee, Chang-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.133-136
    • /
    • 2005
  • In the case of contacts between semiconductor and metal in semiconductor devices, they tend to be unstable because of thermal budget. To prevent these problems we deposited W-C-N diffusion barrier for preventing the interdiffusion between metal and semiconductor. The thickness of the barrier is $1,000{\AA}$ and the pressure is 3 mTorr during the deposition. In this work we coated LSMO (CMR material) on W-C-N diffusion barrier and then we studied the interface effects between LSMO layer and W-C-N diffusion barrier. We got results that the magnetic characteristics of LSMO thin film are still maintained after annealing at $800^{\circ}C$ for 3 hr because W-C-N thin diffusion barrier was prevented the diffusion of oxygen between LSMO and Si substrate.

Diffusion Model of Aluminium for the Formation of a Deep Junction in Silicon (실리콘에서 깊은 접합의 형성을 위한 알루미늄의 확산 모델)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.4
    • /
    • pp.263-270
    • /
    • 2020
  • In this study, the physical mechanism and diffusion effects in aluminium implanted silicon was investigated. For fabricating power semiconductor devices, an aluminum implantation can be used as an emitter and a long drift region in a power diode, transistor, and thyristor. Thermal treatment with O2 gas exhibited to a remarkably deeper profile than inert gas with N2 in the depth of junction structure. The redistribution of aluminum implanted through via thermal annealing exhibited oxidation-enhanced diffusion in comparison with inert gas atmosphere. To investigate doping distribution for implantation and diffusion experiments, spreading resistance and secondary ion mass spectrometer tools were used for the measurements. For the deep-junction structure of these experiments, aluminum implantation and diffusion exhibited a junction depth around 20 ㎛ for the fabrication of power silicon devices.