• Title/Summary/Keyword: diffusion annealing

Search Result 339, Processing Time 0.028 seconds

Characterization of Zn diffusion in TnP Cy $Zn_3P_2$ thin film and rapid thermal annealing (RHP에서의 $Zn_3P_2$ 박막 및 RTA법에 의한 Zn 확산의 특성)

  • 우용득
    • Journal of the Korean Vacuum Society
    • /
    • v.13 no.3
    • /
    • pp.109-113
    • /
    • 2004
  • Zn diffusions in InP have been studied by electrochemical capacitance voltage. The InP layer was grown by metal organic chemical vapor deposition, and $Zn_3P_2$ thin film was deposited on the epitaxial substrates. The samples annealed in a rapid thermal annealing. It is demonstrated that surface hole concentration as high as $1\times10^{19}\textrm{cm}^{-3}$ can be achieved. When the Zn diffusion was carried at $550^{\circ}C$ and 5-20 min., the diffusion depth of hole concentration moves from 1.51$\mu\textrm{m}$ to 3.23 $\mu\textrm{m}$, and the diffusion coeffcient of Zn is $5.4\times10^{-11}\textrm{cm}^2$/sec. After activation, the concentration is two orders higher than that of untreated sample at 0.30 $\mu\textrm{m}$ depth. As the annealing time is increase, the hole concentration remains almost constant, except deep depth. It means that excess Zn interstitials exist in the doped region is rapidly diffusion into the undoped region and convert into substitutional When the thickness of $SiO_2$ thin film is above 1,000$\AA$, the hole concentration becomes stable distribution.

Thermal Diffusion behavior of Al-Si Deposited Electrical Steels (Al-Si 합금 증착 전기강판의 열확산 거동)

  • Kim, C.W.;Cho, K.H.;Suk, H.G.
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.5
    • /
    • pp.214-218
    • /
    • 2007
  • The objective of this study is to evaluate the diffusion behavior of Al and Si from a coatings in the microstucture of Fe-Si steel. Steel samples deposited with Al-Si alloy are prepared by ion plating process, followed by annealing treatments for diffusion at $1050^{\circ}C$. Several intermetallic phases are found in the coatings and they are identified as Fe-Al and an orderd Fe-Si compounds. Series of different concentration profiles through the sample have been obtained and Si content reaches about 5 wt% in case of 90 minutes of diffusion time.

Role of ${\alpha}-Al_2O_3$ buffer layer in $Ba-ferrite/SiO$ magnetic thin films (Ba-페라이트/$SiO_2$ 자성박막에서 ${\alpha}-Al_2O_3$ buffer 층의 역할)

  • Cho, Tae-Sik;Jeong, Ji-Wook;Kwon, Ho-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.267-270
    • /
    • 2003
  • We have studied the interfacial diffusion phenomena and the role of ${\alpha}-Al_2O_3$ buffer layer as a diffusion barrier in the $Ba-ferrite/SiO_2$ magnetic thin films for high-density recording media. In the interface of amorphous Ba-ferrite ($1900-{\AA}-thick)/SiO_2$ thin film during annealing, the interfacial diffusion started to occur at ${\sim}700^{\circ}C$. As the annealing temperature increased up to $800^{\circ}C$, the interfacial diffusion abruptly proceeded resulting in the high interface roughness and the deterioration of the magnetic properties. In order to control the interfacial diffusion at the high temperature, we introduced ${\alpha}-Al_2O_3$ buffer layer ($110-{\AA}-thick$) in the interface of $Ba-ferrite/SiO_2$ thin film. During the annealing of $Ba-ferrite/{\alpha}-Al_2O_3/SiO_2$ thin film even at ${\sim}800^{\circ}C$, the interface was very smooth. The smooth interface of the film was also clearly shown by the cross-sectional FESEM. The magnetic properties, such as saturation magnetization 3nd intrinsic coercivity, were also enhanced, due to the inhibition of interfacial diffusion by the ${\alpha}-Al_2O_3$ buffer layer. Our study suggests that the ${\alpha}-Al_2O_3$ buffer layer act as a useful interfacial diffusion barrier in the $Ba-ferrite/SiO_2$ thin films.

  • PDF

Thermal Stability of TiN/Ti Barrier Metals with Al Overlayers and Si Substrates Modified under Different Annealing Histories (형성조건에 따른 TiN/Ti Barrier Metal의 Al 및 Si 과의 열적 안정성)

  • 신두식;오재응;유성룡;최진석;백수현;이상인;이정규;이종길
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.7
    • /
    • pp.47-59
    • /
    • 1993
  • The thermal stability of "stuffed" TiN/Ti barrier matals with different annealing history has been studied to improve the contact reliability of Al/Si contacts in 16M DRAM. The annealing conditions before the Al deposition such as film thickness, the annealing temperature and the annealing ambient have been varied. For TiN(900A)/Ti(300A) annealed at 450 in nitrogen ambient to form a "stuffed barrier" by inducing oxygen atoms into grain boundaries, there is no observation of Al penetrations into Si substrates after the post heat treatment of up to 700 even though there are massive amounts of Al found in TiN film after the post heat treatment of 600 indicating that TiN has a "sponge-like" function due to its ability to absorb several amounts of aluminum at elevated temperature. The TiN/Ti diffusion barrier annealed at 550 has, however, failed after the post heat treatment at 600. The thinner diffusion barriers with TiN(300A)/Ti(100A) failed after the post heat treatment at 600.he post heat treatment at 600.

  • PDF

A Study on Cu(B)/Ti/SiO2/Si Structure for Application to Advanced Manufacturing Process (차세대 공정에 적용 가능한 Cu(B)/Ti/SiO2/Si 구조 연구)

  • Lee Seob;Lee Jaegab
    • Korean Journal of Materials Research
    • /
    • v.14 no.4
    • /
    • pp.246-250
    • /
    • 2004
  • We have investigated the effects of boron added to Cu film on the Cu-Ti reaction and microstructural evolution of Cu(B) alloy film during annealing of Cu(B)/Ti/$SiO_2$/Si structure. The result were compared with those of Cu(B)/$SiO_2$ structure to identify the effects of Ti glue layers on the Boron behavior and the result grain growth of Cu(B) alloy. The vacuum annealing of Cu(B)/Ti/$SiO_2$ multilayer structure allowed the diffusion of B to the Ti surface and forming $TiB_2$ compounds at the interface. The formed $TiB_2$ can act as a excellent diffusion barrier against Cu-Ti interdiffusion up to $800^{\circ}C$. Also, the resistivity was decreased to $2.3\mu$$\Omega$-cm after annealing at $800^{\circ}C$. In addition, the presence of Ti underlayer promoted the growth Cu(l11)-oriented grains and allowed for normal growth of Cu(B) film. This is in contrast with abnormal growth of randomly oriented Cu grains occurring in Cu(B)/$SiO_2$ upon annealing. The Cu(B)/Ti/$SiO_2$ structure can be implemented as an advanced metallization because it exhibits the low resistivity, high thermal stability and excellent diffusion barrier property.

Study on GZO Thin Films as Insulator, Semiconductor and Conductor Depending on Annealing Temperature (열처리 온도에 따라서 절연체, 반도체, 전도체의 특성을 갖는 GZO 박막의 특성연구)

  • Oh, Teresa
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.342-346
    • /
    • 2016
  • To observe the bonding structure and electrical characteristics of a GZO oxide semiconductor, GZO was deposited on ITO glasses and annealed at various temperatures. GZO was found to change from crystal to amorphous with increasing of the annealing temperatures; GZO annealed at $200^{\circ}C$ came to have an amorphous structure that depended on the decrement of the oxygen vacancies; increase the mobility due to the induction of diffusion currents occurred because of an increment of the depletion layer. The increasing of the annealing temperature caused a reduction of the carrier concentration and an increase of the bonding energy and the depletion layer; therefore, the large potential barrier increased the diffusion current dna the Hall mobility. However, annealing temperatures over $200^{\circ}C$ promoted crystallinity by the defects without oxygen vacancies, and then degraded the depletion layer, which became an Ohmic contact without a potential barrier. So the current increased because of the absence of a potential barrier.

A Study on IIM Process for Ultra-Shallow Cobalt Silicide Junctions (극히 얇은 코발트 실리사이드 접합을 위한 IIM 공정에 관한 연구)

  • 이석운;민경익;주승기
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.8
    • /
    • pp.89-98
    • /
    • 1992
  • IIM(Implantation Into Metal) process usning Co silicides has been investigated to obtain ultra-shallow junctions less than 0.1$\mu$m. Rapid Thermal Annealing using halogen lamps was employed to form CoSi$_2$ and junctions simultaneously.. Resistivities of CoSi$_2$ were 13-17$\mu$ $\Omega$-cm. CoSi$_2$/p$^{+}$/Si and CoSi$_2$/n$^{+}$/Si junction were formed by diffusion of B and As, respectively, from Co film. It was found out that B and As were severely lost by the evaporation during high temperature annealing Therefore SiO$_2$ capping layers were introduced to prevent the evaporation of the implanted dopants from the films. Investigation of the behavior of dopants with respect to annealing time revealed that increasing the annealing time enhanced the diffusion of dopants into Si from CoSi$_2$.

  • PDF

Microstructure and electrical properties of high power laser thermal annealing on inkjet printed Ag films

  • Yoon, Yo-Han;Yi, Seol-Min;Yim, Jung-Ryoul;Lee, Ji-Hoon;Joo, Young-Chang
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.36.2-36.2
    • /
    • 2009
  • In this work, the high power CW Nd:YAG laser has been used for thermal treatment of inkjet printed Ag films-involving eliminating organic additives (dispersant, binder, and organic solvent) of Ag ink and annealing Ag nanoparticles. By optimizing laser parameters, such as laser power and defocusing value, the laser energy can totally be converted to heat energy, which is used to thermal treatment of inkjet printed Ag films. This results in controlling the microstructures and the resistivity of films. We investigated the thermal diffusion mechanisms during laser annealing and the resulting microstructures. The impact of high power laser annealing on microstructures and electrical characteristic of inkjet printed Ag films is compared to those of the films annealed by a conventional furnace annealing. Focused ion beam (FIB) channeling image shows that the laser annealed Ag films have large columnar grains and dense structure (void free), while furnace annealed films have tiny grains and exhibit void formation. Due to these microstructural characteristics of laser annealed films, it has better electrical property (low resistivity) compared to furnace annealed samples.

  • PDF

Self diffusion of cation in yttria stabilized zirconia single crystal

  • Cheong, Deock-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.5
    • /
    • pp.237-241
    • /
    • 2009
  • Dislocation dipoles were formed in the early stage of deformation of Y-CSZ single crystal at high temperatures. And the dipoles were pinched off to break into dipoles loops by dislocation climb. Dislocation loop annealing was peformed in Y-CSZ single crystal to evaluate the diffusivity of cation which was the rate-controlling ion.

Diffusion barrier characteristics of molybdenum nitride films for ultra-large-scale-integrated Cu metallization(II); Effect of deposition conditions on diffusion barrier behavior of molybdenum nitride

  • Lee, Jeong-Joub;Lee, You-Kee;Jeon, Seok-Ryong;Kim, dong-Joon
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.1 no.1
    • /
    • pp.30-37
    • /
    • 1997
  • Interactions of Cu films with Si substrates separated by thin layers of molybdenum and molybdenum nitride were investigated in the viewpoint of diffusion barrier to copper. the diffusion barrier behavior of the layers was studied as functions of deposition and annealing conditions by cross-sectional transmission electron microscopy and Nomarski microscopy. the layers deposited at $N_2$ gas ratios of 0.4 and 0.5 exhibited good diffusion barrier behaviors up to $700^{\circ}C$, mainly due to the phase transformation of molybdenum to $\gamma$-Mo$_2$N phase. The increase in the N gas ratio in deposition elevates the lower limit of barrier failure temperature. Futhermore, amorphous molybdenum nitride films deposited at 20$0^{\circ}C$ and 30$0^{\circ}C$ did not fail, while the crystalline $\gamma$-Mo$_2$N films deposited at 40$0^{\circ}C$ and 50$0^{\circ}C$ showed signs of interlayer interactions between Cu and Si after annealing at 75$0^{\circ}C$ for 30 minutes. Therefore, the amorphous nature of the molybdenum nitride layer enhanced its ability to reduce Cu diffusion and its stability as a diffusion barrier at elevated temperatures.