• Title/Summary/Keyword: diffuse light

Search Result 220, Processing Time 0.02 seconds

TEMPORAL AND SPATIAL VARIATIONS OF THE ATMOSPHERIC DIFFUSE LIGHT

  • Kwon, Suk-Min
    • Journal of The Korean Astronomical Society
    • /
    • v.22 no.2
    • /
    • pp.141-160
    • /
    • 1989
  • In order to derive time dependence of the atmospheric diffuse light, which consists of the airglow continuum emission and diffusely scattered radiations of the intergrated starlight, the diffuse Galactic light, and the zodiacal light, we have analyzed the meridian scan observations of the sky brightness at $5,080\;{\AA}$ and $5,300\;{\AA}$. Amplitude of the time-variation becomes larger for lower elevation, and maximum amplitude is found to be about $50\;S_{10}(V)_{G2V}$ at elevation $10^{\circ}$. The atmospheric diffuse radiation attains maximum brightness at around midnight, and afterward it decreases slowly with time. The time-variations for the two wavelengths are similar to each other. The observed brightness distribution of the diffuse light along the zenith distance is fitted to an empirical relation of two parameters. By making the two parameters time-dependent, we describe the spatial and time variations of the atmospheric diffuse light. This enables us to make time dependent correction for the atmospheric diffuse component in the reduction of zodiacal light brightness.

  • PDF

THE DIFFUSE NEAR-INFRARED BACKGROUND SPECTRUM FROM AKARI

  • Kohji, Tsumura;Toshio, Matsumoto;Shuji, Matsuura;Itsuki, Sakon;Takehiko, Wada
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.321-326
    • /
    • 2017
  • We analyzed spectral data of the astrophysical diffuse emission obtained with the low-resolution spectroscopy mode on the AKARI InfraRed Camera (IRC) in the $1.8-5.3{\mu}m$ wavelength region. Advanced reduction methods specialized for slit spectroscopy of diffuse sky spectra have been developed, and a catalog of 278 spectra of the diffuse sky covering a wide range of Galactic and ecliptic latitudes was constructed. Using this catalog, two other major foreground components, the zodiacal light (ZL) and the diffuse Galactic light (DGL), were separated and subtracted by taking correlations with ZL brightness estimated by the DIRBE ZL model and with the $100{\mu}m$ dust thermal emission, respectively. The isotropic emission was interpreted as the extragalactic background light (EBL), which shows significant excess over the integrated light of galaxies at <$4{\mu}m$.

Evaluation of Diffuse Reflectance in Multi-layered Tissue for High Intensity Laser Therapy

  • Lee, Sangkwan;Youn, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.205-212
    • /
    • 2013
  • Pain is one of the quite common symptoms in clinics and many treatment methods have been applied to relieve pain. Among the treatments, high-intensity light therapy for pain has been introduced, but this therapy has not been fully supported by confirmed efficacy due to the absence of quantitative assessments and treatment feedback data in real time. In this study, the evaluation of light distribution in tissue was performed with current high-intensity light sources quantitatively using light-tissue interaction simulations. The diffuse reflectance in tissue was generated using Monte Carlo simulation that traces photons as they undergo multiple scattering and absorption within each tissue layer (skin, fat, and muscle) and within multi-layered tissue. The results showed that the highest diffuse reflectance and the deepest penetration of tissue were achieved at ${\lambda}$=830 nm when compared with other wavelengths like ${\lambda}$=650 nm, 980 nm and 1064 nm.

Estimation of Specular Light Power by Adjusting Incident Laser Power for Measuring Mirror-Like Surface Roughness (경면 거칠기 측정을 위해 레이저 입사 강도 조정에 의한 정반사 광량 추정 알고리즘 개발)

  • 서영호;김주년;안중환
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.94-101
    • /
    • 2004
  • From the Beckmann's reflection model of wave incident, reflected light from a surface is known to have not only specular but also diffuse components. The specular component dominant a surface for a mirror-like surface is distributed on the almost the same area as the spot on the surface, but the diffuse component region dominant f3r a rough surface spreads scattered on the larger areas than the spot. Therefore, statistic parameters from the scattered light distribution are more meaningful in the diffuse region, while the magnitude of rather meaning in the specular region. In usual, there need two sensors to acquire two kinds of information: Photo-detector for light intensity magnitude and image sensor for light intensity distribution. But dual sensor scheme requires a beam splitter usually to feed light to each sensor, and moreover there is not a combination rule to relieve the different sensor characteristics. In this study a new method is proposed for acquisition of the dual information using only an image sensor. Specular region is established on an image area being distinguished from a diffuse component, and laser power is adjusted so that no pixel of the image sensor in the specular region is saturated. Simulation based on the light reflection theory and the experimental results are quite well matched, and thus the proposed method was proved to be very useful for mirror-like surface measurement.

Improvement of Canopy Light Distribution, Photosynthesis, and Growth of Lettuce (Lactuca Sativa L.) in Plant Factory Conditions by Using Filters to Diffuse Light from LEDs (LED 식물공장에서 산란 유리 이용에 의한 상추(Lactuca Sativa L.)의 군락 광분포, 광합성 및 생장 향상)

  • Kang, Woo Hyun;Zhang, Fan;Lee, June Woo;Son, Jung Eek
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.84-93
    • /
    • 2016
  • Plant factories with artificial lights require a large amount of electrical energy for lighting; therefore, enhancement of light use efficiency will decrease the cost of plant production. The objective of this study was to enhance the light use efficiency by using filters to diffuse the light from LED sources in plant factory conditions. The two treatments used diffuse glasses with haze factors of 40% and 80%, and a control without the filter. For each treatment, canopy light distribution was evaluated by a 3-D ray tracing method and canopy photosynthesis was measured with a sealed acrylic chamber. Sixteen lettuces for each treatment were cultivated hydroponically in a plant factory for 28 days after transplanting and their growth was compared. Simulation results showed that the light absorption was concentrated on the upper part of the lettuce canopy in treatments and control. The control showed particularly poor canopy light distribution with hotspots of light intensity; thus the light use efficiency decreased compared to the treatments. Total light absorption was the highest in the control; however, the amount of effective light absorption was higher in treatments than the control, and was highest in treatment using filters with a haze factor of 80%. Canopy photosynthesis and plant growth were significantly higher in all the treatments. In conclusion, application of the diffuse glass filters enhanced the canopy light distribution, photosynthesis, and growth of the plants under LED lighting, resulting in enhanced the light use efficiency in plant factory conditions.

MODELING OF THE ZODIACAL LIGHT FOR THE AKARI MID-IR ALL-SKY DIFFUSE MAPS

  • Kondo, Toru;Ishihara, Daisuke;Kaneda, Hidehiro;Oyabu, Shinki;Amatsutsu, Tomoya;Nakamichi, Keichiro;Sano, Hidetoshi;Ootsubo, Takafumi;Onaka, Takashi
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.59-61
    • /
    • 2017
  • The AKARI 9 and 18 µm diffuse maps reveal the all-sky distribution of the interstellar medium with relatively high spatial resolution of ~6". The zodiacal light is a dominant foreground component in the mid-infrared. Thus, removal of the zodiacal light is a critical issue to study low surface brightness Galactic diffuse emission. We carried out modeling of the zodiacal light based on the Kelsall model which is constructed from the COBE data. In the previous study, only a time-varying component of the zodiacal light brightness was used for determination of the model parameters. However, there remains a residual component of the zodiacal light around the ecliptic plane even after removal with the model. Therefore, instead of using a time-varying component, we use the absolute brightness of the zodiacal light and we find that the new model can better remove the residual component. As a result, the best-fit model parameters are changed from those in the previous study. We discuss the properties of the zodiacal light based on our new result.

A PLANE-PARALLEL MODEL OF THE DIFFUSE GALACTIC LIGHT (확산 은하 복사광에 대한 평면 평행 모델)

  • Seon, Kwang-Il
    • Publications of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • A plane-parallel model of the diffuse Galactic light (DGL) is calculated assuming exponential disks of interstellar dust and OB stars, by solving exactly the radiative transfer equation using an iterative method. We perform a radiative transfer calculation for a model with generally accepted scale heights of stellar and dust distribution and compare the results with those of van de Hulst & de Jong for a constant slab model. We also find that the intensity extrapolated to zero dust optical depth has a negative value, against to the usual expectation.

Optical Property Measurements of Optical Phantoms and Honan Tissues Using Frequency-Domain Diffuse Optical Tomography (주파수 영역 확산광 단층촬영 장치를 이용한 광 팬텀 및 인체조직의 광 계수 측정)

  • Ho, Dong-Su;Kwon, Ki-Woon;Eom, Gi-Yun;Lee, Seung-Duk;Kim, Beop-Min
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.2
    • /
    • pp.229-234
    • /
    • 2007
  • Diffuse optical tomography (DOT) is a relatively new medical imaging modality which uses near infrared light to image large-sized tissues noninvasively. We constructed a frequency-domain DOT system to measure the optical properties of optical phantoms and human tissues. The FD-DOT uses the intensity-modulated infrared light source that illuminates the biological tissues. The phase shift and modulation changes at each detector site are separately processed to measure the optical properties. The absorption and scattering coefficients are separately estimated using inverse algorithms.

Intracluster Light Study of the Distant Galaxy Cluster SPT2106-5844 at z=1.132 with Hubble Space Telescope Infrared Imaging Data

  • Joo, Hyungjin;Jee, Myungkook James;Ko, Jongwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.76.3-76.3
    • /
    • 2019
  • Intracluster stars are believed to be gravitationally bound to a galaxy cluster, however, not to individual cluster galaxies. Their presence is observed as diffuse light typically in the central region extended from the brightest cluster galaxy. The diffuse light, often referred to as intracluster light (ICL), is difficult to quantify in distant high-redshift galaxy clusters because of the significant surface brightness dimming although ICL observations in high-redshift clusters provide powerful constraints on the origin of intracluster stars. In this poster, we present ICL study of the distant galaxy cluster SPT2106-5844 at z=1.132 with Hubble Space Telescope IR imaging data. With careful control of systematics, we successfully quantify the total amount of the ICL, measure the color profile, and obtain its two-dimensional distribution. Our measurement of the high abundance of the intracluster stars in this young cluster favors the ICL formation scenario, wherein production of intracluster stars are predominantly associated with the BCG formation.

  • PDF

Evaluation of the Scar Treatment using Near Infrared Diffuse Reflectance Spectroscopy (근적외선 확산반사 분광법을 이용한 흉터치료 평가)

  • Jang, I.J.;Youn, Jong-In
    • Journal of Biomedical Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.53-60
    • /
    • 2016
  • Monitoring of dermal collagen is important to assess various scar conditions, and many diagnostic methods have been applied to quantify collagen contents in scar tissue. In this study, Monte Carlo simulation was used to evaluate diffuse reflectance distributions in scar condition by a near-infrared laser source. The results showed that the effective distance of the light source and the detector was 2 mm to monitor the various scar conditions using diffuse reflectance spectroscopy. This study may suggest to the optimal design for a near infrared diffuse reflectance spectroscopy during the scar treatment.