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ABSTRACT

We analyzed spectral data of the astrophysical diffuse emission obtained with the low-resolution spec-

troscopy mode on the AKARI InfraRed Camera (IRC) in the 1.8-5.3 µm wavelength region. Advanced

reduction methods specialized for slit spectroscopy of diffuse sky spectra have been developed, and a

catalog of 278 spectra of the diffuse sky covering a wide range of Galactic and ecliptic latitudes was

constructed. Using this catalog, two other major foreground components, the zodiacal light (ZL) and the

diffuse Galactic light (DGL), were separated and subtracted by taking correlations with ZL brightness es-

timated by the DIRBE ZL model and with the 100 µm dust thermal emission, respectively. The isotropic

emission was interpreted as the extragalactic background light (EBL), which shows significant excess over

the integrated light of galaxies at <4 µm.

Key words: AKARI — diffuse galactic light — extragalactic background light — spectral catalog —

zodiacal light

1. INTRODUCTION

The astrophysical sky brightness obtained from outside

of the terrestrial atmosphere includes three components.

• Zodiacal light (ZL): the scattered sunlight by inter-

planetary dust (IPD) at optical and near-infrared

(NIR), and thermal zodiacal emission (ZE) from the

same IPD at mid-infrared region or longer1.

• Diffuse Galactic Light (DGL): the scattered

starlight by dust particles in interstellar space at

/ <3 µm, and emissions from the dust particles

with some band features at longer wavelengths.

• Extragalactic Background Light (EBL): residual

observed brightness after subtraction of all known

1 Sometimes the term ZL indicates only the scattered compo-

nent to distinguish it from ZE. However, the term ZL indicates

both scattered and thermal components in this paper, while

the term ZE indicates only the thermal emission component.

http://pkas.kas.org

foreground components. This should be the inte-

grated light of all light sources outside our Galaxy.

Previous measurements of the absolute sky bright-

ness from space by DIRBE (Cambŕesy et al., 2001) and

IRTS (Matsumoto et al., 2005) indicated that the EBL

brightness at NIR after subtraction of ZL and other fore-

grounds significantly exceeds the integrated brightness

of galaxies. The origin of this excess is still not clear,

but some theoretical models such as the first star models

(Santos et al., 2002; Salvaterra & Ferrara, 2003; Cooray

& Yoshida, 2004; Dwek et al., 2005a; Madau & Silk,

2005; Fernandez & Komatsu, 2006; Fernandez et al.,

2010) and the intrahalo light (IHL) model (Cooray et

al., 2012b) are suggested.

New observational results of the absolute sky spec-

trum were obtained by the AKARI InfraRed Camera

(IRC) (Tsumura et al., 2013a,b,c). This paper sum-

marizes the result of the absolute diffuse spectrum by

AKARI, and adds some discussions about recent results.
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Figure 1. Examples of correlation of AKARI observed sky brightness to the 100 µm far-infrared map (SFD map) (Schlegel

et al., 1998) (left) and the ZL model intensity based on Kelsall et al. (1998) (right) at 3.3 µm (Tsumura et al., 2013a,b).

2. OBSERVATIONAL DATA

AKARI is the first Japanese infrared astronomical satel-

lite, equipped with a cryogenically cooled telescope of

68.5 cm aperture diameter (Murakami et al., 2007). IRC

is one of two astronomical instruments of AKARI, cov-

ering 1.8-5.3 µm wavelength region with a 512×412 InSb

detector in the NIR channel (Onaka et al., 2007). It pro-

vides low-resolution (λ/∆λ ∼ 20) slit spectroscopy for

the diffuse radiation by a prism (Ohyama et al., 2007).

See Tsumura et al. (2013a) for the details of the data

selection and reduction. According to our data selec-

tion criteria for the diffuse background analysis, a total

of 278 diffuse spectra were selected with wide ranges of

ecliptic and Galactic coordinates. This catalog of dif-

fuse sky spectra is available at ISAS/JAXA2. Dark cur-

rent subtraction is essential to obtain the absolute sky

brightness, and the uncertainty due to the dark current

subtraction is < 3 nWm−2sr−1 at 2 µm (Tsumura &

Wada, 2011). On the other hand, Spitzer was unable to

measure the absolute sky brightness since its cold shut-

ter was not operated in-orbit (Fazio et al., 2004a). This

is a great advantage of AKARI over Spitzer.

Point sources brighter than mK(Vega) = 19 were de-

tected and masked for deriving the diffuse spectrum.

It was confirmed that the brightness due to unresolved

Galactic stars under this detection limit is negligible

(<0.5 % of the sky brightness at 2.2 µm) by a Milky Way

star count model, TRILEGAL (Girardi et al., 2005).

This is a great advantage over the previous measure-

2 http://www.ir.isas.jaxa.jp/AKARI/Archive/Catalogues/

IRC_diffuse_spec/.

ments by DIRBE and IRTS, because the integrated light

from unresolved Galactic stars for those measurements

are not negligible. The sky spectrum includes ZL, DGL,

and EBL, i.e.,

SKYi(λ) = ZLi(λ) +DGLi(λ) + EBLi(λ) (1)

where i is the data index. The cumulative brightness

contributed by unresolved galaxies can be estimated by

deep galaxy counts, yielding <4 nWm−2sr−1 in the K

band with a limiting magnitude of mK = 19 (Keenan et

al., 2010), which is included in EBL.

3. FOREGROUND SEPARATION

Foreground components are separated by using the dif-

ferent distributions in the sky. For example, DGL is

correlatied to the interstellar dust which can be traced

by the 100 µm far-infrared map (SFD map) (Schlegel et

al., 1998). Thus SKYi(λ) − ZLi(λ) at each wavelength

are correlated against dust emission at 100 µm, and this

correlated component can be interpreted as DGL.

SKYi(λ) − ZLi(λ) = a(λ) · I100µmi + EBL(λ) (2)

The separation method for ZL is also similar to DGL.

ZL is correlated against ecliptic latitude, and the distri-

bution of ZL is modeled by Kelsall et al. (1998) using

DIRBE data. The ZL template spectrum was derived

by differencing the DGL subtracted AKARI spectra at

the ecliptic plane (ZL strongest region) and that at the

NEP (ZL weakest region), thus the isotropic EBL is re-

moved by differencing. Using this ZL template spec-

trum and model brightness from Kelsall et al. (1998),
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Figure 2. Spectrum of EBL and integrated light of galaxies (Tsumura et al., 2013c). Filled points show various measurement

of the EBL from space including this study, and open plots shows the integrated light of galaxies in deep observations.

Horizontal bars show the band widths of wide-band data. The solid curve shows a model spectrum of the integrated light of

galaxies based on the observed evolution of the rest-frame K-band galaxy luminosity function up to redshift 4 (Domı́nguez et

al., 2011), and the broken curve shows a scaled version of it in case of AKARI’s detection limit of point sources (mK = 19).

the ZL model spectrum ZLmodeli (λ) was obtained. The

correlation analysis between SKYi(λ) − DGLi(λ) and

ZLmodeli (λ) was conducted at each wavelength, and y-

intercepts indicate the isotropic EBL.

SKYi(λ)−DGLi(λ) = C(λ)·ZLmodeli (λ)+EBL(λ) (3)

The correlations between DGL and ZL at 3.3 µm are

shown in Figure 1. In the real procedure of foreground

separation, in practice, the correlation analysis of DGL

(equation (2) and Figure 1(left)) and ZL (equation (3)

and Figure 1(right)) are iterated, and the best estimates

of ZL and DGL are subtracted. See Tsumura et al.

(2013b) for more details of the DGL, and Tsumura et

al. (2013a) for the ZL.

4. EXTRAGALACTIC BACKGROUND LIGHT

Figure 2 shows the resultant EBL spectrum from our

AKARI dataset with various previous results. Our spec-

trum from AKARI/IRC is basically consistent with the

results by IRTS (Matsumoto et al., 2005) and DIRBE

(Cambŕesy et al., 2001; Levenson & Wright, 2007), in-

dicating the excess over the integrated light of galax-

ies. At wavelengths shorter than 3 µm, AKARI shows

a slightly lower brightness from IRTS. This difference

could be attributed to the difference of the detection

limits for point sources. The difference of the integrated

light of unresolved galaxies owing to this limiting mag-

nitude difference between AKARI (19 mag) and IRTS

(10.5 mag) is estimated to be ∼5 nWm−2sr−1 (Keenan

et al., 2010) which explains the difference of EBL bright-

ness.

There is a gap in our result between 3.0 µm and 3.5

µm due to the difficulty of modeling the foregrounds

in this wavelength region. The diffuse sky brightness

in this wavelength range includes all three foreground

components (scattered sunlight of IPD, thermal emis-

sion from IPD, and DGL with the 3.3 µm PAH band)

with similar fractions, which makes the foreground mod-

eling difficult. The gap around 3.3µm could not be due

to the EBL, but it was caused by an overestimation of

the 3.3 µm PAH band intensity in DGL spectrum at

high Galactic latitude regions.

We obtained a new spectral measurement of EBL at

>4 µm, and we cannot confirm the excess over the in-

tegrated light of galaxies at >4 µm. In addition, our

result contradicts the high EBL brightness at 4.9 µm by

Arendt & Dwek (2003). Note that the high EBL bright-

ness at 4.9 µm from Arendt & Dwek (2003) is highly

uncertain since it is not an observed value but an esti-

mated value from EBL at 1.25, 2.2, 3.5, and 100 µm.

See Tsumura et al. (2013c) for more details of the

EBL spectrum.

5. What Is Origin of EBL Excess?

How can we understand the excess EBL over the inte-

grated light of galaxies at <4 µm? First we examine a
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possible solar system origin. If there is an isotropic com-

ponent to the ZL, it cannot be subtracted by the corre-

lation method in our study. One candidate isotropic ZL

component is a dust shell centred on the Earth, but such

a dense dust shell around the Earth must be detected al-

ready, if it exists. An isotropic diffuse background from

the Oort cloud could be another candidate. However,

the very blue spectrum toward 1 µm cannot be gener-

ated by thermal emission from very cold dust (<30 K)

at the Oort cloud. Scattered sunlight by the Oort cloud

is also negligible because sunlight at ∼ 104 − 105 au is

very weak.

The second possibility is a Galactic origin. Faint stars

in the Galactic halo, which were tidally stripped during

galaxy mergers and collisions, generate the diffuse in-

trahalo light (IHL). However, the negative detection of

extended halos in external galaxies was reported (Uem-

izu et al., 1998; Yost et al., 2000). Furthermore, the

observed excess emission, ∼23 mag/arcsec2 in the H-

band, can be easily detected for external galaxies with

e.g. HST/NICMOS (Thompson et al., 2007a,b), but

no detection has been reported yet. In addition, recent

results by the ultra low surface brightness imaging tech-

nique (∼32 mag/arcsec2 at g-band) (Abraham & van

Dokkum, 2014) concluded that the mass fraction of the

stellar halo around M101 is less than 0.9% (van Dokkum

et al., 2014). These considerations support the assertion

that observed excess emission cannot be explained by

IHL from our Galaxy.

However, integration of such IHL around galaxies to-

ward the line-of-sight may explain the EBL excess. Such

IHL model was suggested by Cooray et al. (2012b) to

explain the observed fluctuation of the EBL. The spatial

fluctuations of the EBL were observed by CIBER (Zem-

cov et al., 2014), AKARI (Matsumoto et al., 2011), and

Spitzer (Kashlinsky et al., 2005, 2007, 2012) from 1.1 to

4.5 µm in order to avoid uncertainty of the ZL model,

since the ZL is known to be spatially smooth (Pyo et

al., 2012). The observed fluctuations are consistent with

each other and show significant large fluctuations at an-

gular scales larger than 100 arcsec, which cannot be ex-

plained by known foreground emission. The IHL model

largely explained the obtained fluctuations, but it is still

under discussion if the IHL model can explain the ab-

solute intensity of the EBL. recent theoretical models

of the first stars indicate both the expected brightness

and fluctuations are 10 times lower or more than the

observed values (Cooray et al., 2012a; Fernandez et al.,

2012; Inoue et al., 2013; Yue et al., 2013).

Results from TeV-γ blazars are problems for the ex-

tragalactic origin of the EBL, since a high NIR EBL

level makes intergalactic space opaque to TeV-γ photons

(Dwek et al., 2005b; Aharonian et al., 2006, 2007; Mazin

& Raue, 2007; Raue et al., 2009). However, a recent dis-

covery of a high redshift (z> 0.6) blazar (Furniss at al.,

2013) contradicts the standard scenario above, and it re-

quires a new physical process, such as the secondary TeV

γ-ray model (Essey & Kusenko, 2010) or the Axion-like

particles model (Sánchez-Conde et al., 2007). If these

processes take place, the TeV γ-ray and the EBL ex-

cess can coexist. The origins of the excess emission and

fluctuation are still not clear, and new observations are

widely expected to delineate their origins The Cosmic

Infrared Background ExpeRiment (CIBER) (Zemcov et

al., 2013) will provide the spectrum of the sky at 0.75-

1.8 µm with the Low Resolution Spectrometer (LRS)

(Tsumura et al., 2010, 2013d). Observation from out-

side the zodiacal cloud is also highly desirable to conduct

an ideal observation of the EBL without the strong ZL

foreground. A small infrared telescope, EXo-Zodiacal

Infrared Telescope (EXZIT), has been proposed as one

of instruments on the Solar Power Sail mission to Jupiter

(Matsuura et al., 2014). The measurement of the NIR

EBL at 5 AU will be conducted in the 2020s.
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