• 제목/요약/키워드: differentiation therapy

Search Result 347, Processing Time 0.02 seconds

Isolation of Peripheral Blood-Derived Mesenchymal Stem Cells in Mares and Foals

  • Ye-Eun Oh;Eun-Bee Lee;Jong-Pil Seo
    • Journal of Veterinary Clinics
    • /
    • v.40 no.5
    • /
    • pp.323-329
    • /
    • 2023
  • Peripheral blood-derived mesenchymal stem cells (PB-MSCs) have shown promise in cell-based therapy, as they can be harvested with ease through minimally invasive procedures. This study aimed to isolate PB-MSCs from foals and mares and to compare the proliferation and cellular characteristics of the PB-MSCs between the two groups. Six pairs of mares and their foals were used in this study. MSCs were isolated from PB by direct plating in a tissue culture medium, and cell proliferation (population doubling time [PDT], and colony-forming unit-fibroblast assay [CFU-F]), and characterization (morphology, plastic adhesiveness, colony formation, trilineage differentiation) were examined. There was no significant difference in the PB-MSC yield, CFU-F, and PDT between the mares and foals. PB-MSCs from both mares and foals showed typical MSC characteristics in terms of spindle-shaped morphology, plastic adhesive properties, formation of colonies, trilineage differentiation. These results suggest that PB-MSCs isolated from horses, both adult horses, and foals, can be used for equine cell-based therapy.

Induction of a Neuronal Phenotype from Human Bone Marrow-Derived Mesenchymal Stem Cells

  • Oh, Soon-Yi;Park, Hwan-Woo;Cho, Jung-Sun;Jung, Hee-Kyung;Lee, Seung-Pyo;Paik, Ki-Suk;Chang, Mi-Sook
    • International Journal of Oral Biology
    • /
    • v.34 no.4
    • /
    • pp.177-183
    • /
    • 2009
  • Human mesenchymal stem cell (hMSCs) isolated from human adult bone marrow have self-renewal capacity and can differentiate into multiple cell types in vitro and in vivo. A number of studies have now demonstrated that MSCs can differentiate into various neuronal populations. Due to their autologous characteristics, replacement therapy using MSCs is considered to be safe and does not involve immunological complications. The basic helix-loop-helix (bHLH) transcription factor Olig2 is necessary for the specification of both oligodendrocytes and motor neurons during vertebrate embryogenesis. To develop an efficient method for inducing neuronal differentiation from MSCs, we attempted to optimize the culture conditions and combination with Olig2 gene overexpression. We observed neuron-like morphological changes in the hMSCs under these induction conditions and examined neuronal marker expression in these cells by RTPCR and immunocytochemistry. Our data demonstrate that the combination of Olig2 overexpression and neuron-specific conditioned medium facilitates the neuronal differentiation of hMSCs in vitro. These results will advance the development of an efficient stem cell-mediated cell therapy for human neurodegenerative diseases.

Molecular Characterization of Neurally Differentiated Human Bone Marrow-derived Clonal Mesenchymal Stem Cells

  • Yi, TacGhee;Lee, Hyun-Joo;Cho, Yun-Kyoung;Jeon, Myung-Shin;Song, Sun U.
    • IMMUNE NETWORK
    • /
    • v.14 no.1
    • /
    • pp.54-65
    • /
    • 2014
  • Bone marrow-derived mesenchymal stem cells (MSCs) are multipotent, with the ability to differentiate into different cell types. Additionally, the immunomodulatory activity of MSCs can downregulate inflammatory responses. The use of MSCs to repair injured tissues and treat inflammation, including in neuroimmune diseases, has been extensively explored. Although MSCs have emerged as a promising resource for the treatment of neuroimmune diseases, attempts to define the molecular properties of MSCs have been limited by the heterogeneity of MSC populations. We recently developed a new method, the subfractionation culturing method, to isolate homogeneous human clonal MSCs (hcMSCs). The hcMSCs were able to differentiate into fat, cartilage, bone, neuroglia, and liver cell types. In this study, to better understand the properties of neurally differentiated MSCs, gene expression in highly homogeneous hcMSCs was analyzed. Neural differentiation of hcMSCs was induced for 14 days. Thereafter, RNA and genomic DNA was isolated and subjected to microarray analysis and DNA methylation array analysis, respectively. We correlated the transcriptome of hcMSCs during neural differentiation with the DNA methylation status. Here, we describe and discuss the gene expression profile of neurally differentiated hcMSCs. These findings will expand our understanding of the molecular properties of MSCs and contribute to the development of cell therapy for neuroimmune diseases.

In vitro Expansion of Umbilical Cord Blood Derived Mesenchymal Stem Cells (UCB-MSCs) Under Hypoxic Conditions

  • Yang, Jungyun;Kwon, Jihye;Kim, Miyeon;Bae, Yunkyung;Jin, Hyejin;Park, Hohyun;Eom, Young Woo;Rhee, Ki-Jong
    • Biomedical Science Letters
    • /
    • v.21 no.1
    • /
    • pp.40-49
    • /
    • 2015
  • Mesenchymal stem cells (MSCs) have the ability to self-renew and differentiate into multi-lineage cells, thus highlighting the feasibility of using umbilical cord blood-derived MSCs (UCB-MSCs) for cell-therapy and tissueengineering. However, the low numbers of UCB-MSC derived from clinical samples requires that an ex vivo expansion step be implemented. As most stem cells reside in low oxygen tension environments (i.e., hypoxia), we cultured the UCBMSCs under 3% $O_2$ or 21% $O_2$ and the following parameters were examined: proliferation, senescence, differentiation and stem cell specific gene expression. UCB-MSCs cultured under hypoxic conditions expanded to significantly higher levels and showed less senescence compared to UCB-MSCs cultured under normoxic conditions. In regards to differentiation potential, UCB-MSCs cultured under hypoxic and normoxic conditions both underwent similar levels of osteogenesis as determined by ALP and von Kossa assay. Furthermore, UCB-MSCs cultured under hypoxic conditions exhibited higher expression of OCT4, NANOG and SOX2 genes. Moreover, cells expanded under hypoxia maintained a stem cell immnunophenotype as determined by flow cytometry. These results demonstrate that the expansion of human UCB-MSCs under a low oxygen tension microenvironment significantly improved cell proliferation and differentiation. These results demonstrate that hypoxic culture can be rapidly and easily implemented into the clinical-scale expansion process in order to maximize UCB-MSCs yield for application in clinical settings and at the same time reduce culture time while maintaining cell product quality.

Differentiation and Proliferation of Porcine T Lymphocytes in NOD/SCID Mice (NOD/SCID 모델 마우스 생체 내 돼지 T 면역세포의 증식 및 분화)

  • Lee, Yong-Soo;Kim, Tae-Sik;Kim, Jae-Hwan;Chung, Hak-Jae;Park, Jin-Ki;Chang, Won-Kyong;Kim, Dong-Ku
    • Reproductive and Developmental Biology
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The nonobese diabetic / severe combined immune deficiency (NOD/SCID) has been used for determination of proliferation and differentiation of hematopoietic stem cells as xenotransplantation animal model. In this study, we transplanted porcine hematopoietic cells from bone marrow into NOD/SCID mice via intravenous injection to confirm the activity of differentiation and proliferation for porcine hematopoietic cells in vivo. Interestingly, we observed the result of high efficiency with pig T lymphocytes in hematopoietic organs, liver, spleen lymph node, and bone marrow in NOD/SCID mice. The porcine $CD3^{+}$ T cells were detected with $5.4{\pm}1.9%$ in bone marrow, $15.4{\pm}7.3%$ in spleen, $21.3{\pm}1.4%$ in liver, and $33.5{\pm}32.8%$ in lymph node of NOD/SCID mice at 6 weeks after trans-plantation Furthermore, immunohistochemical analysis showed the high engraftment of porcine T lymphocytes in spleen of NOD/SCID mice. Our data suggest that NOD/SCID mice are excellent animal model to determinate the generation md function of pig T lymphocytes.

Three-generation stories of the Joseon Dynasty, A Study on the Aspects of Family Therapy (삼대록계 국문 장편소설에 나타난 가족치료양상 연구 - 보웬의 이론에 근거하여 -)

  • Lee, hui su
    • (The)Study of the Eastern Classic
    • /
    • no.49
    • /
    • pp.393-430
    • /
    • 2012
  • In this paper, Bowen's family therapy from the perspective of the theory, narrative analysis of Korean novels, three Regis - tration Subsection.Bowen's description of the individual's behavior is causing problems within the family of anxiety and self-differentiation using two variables. The home if problems or conflicts expressed in these works, the figures showed that the undifferentiated ego at the center of the problem. Undifferentiated ego character felt extreme anxiety when their alienation from the relationship of the family-oriented jeokjangja Undifferentiated ego to relieve anxiety and to consolidate their position in the family relationship, so people were strongly united with each other. Sohyunseongnok, Chossisamdaerok series structures and patterns of a series of domestic problems occur, "mother and son, self-differentiation self undifferentiated undifferentiated ego and self-differentiation mother son, mother and self-ego undifferentiated undifferentiatedcan be subdivided into the son '.Established a symbiotic relationship between them and the U.S. established the presence of a pattern, healer, depending on the deployment method depends narrative. And is divided accordingly, self-determination and to the Son, a son, a son to be born again through repentance of the execution. Depending on the presence or absence healer than what was described on the deployment structure differs. Undifferentiated ego and self undifferentiated mother son family therapist within the family, the problem is solved. Son, a son to repent and be born again, and that caused the problem. Ego Undifferentiated mother and son self-differentiation, undifferentiated ego and self-differentiation mother son home my healer in the absence son committed suicide and executions each tragedy occurred. Personal level, but occurred at home conflicts or problems about this when analyzing the Three-generation stories of the Joseon Dynasty, by applying the theory of Bowen's Family Therapy view dimension in the relationship between family were. Toughness or desire of any one individual, but serious conflicts and problems within the family, the institution of the family itself is the root cause was. And was able to reveal aspects of narrative flow, depending on the presence or absence of family therapists vary significantly depending on his role in the rest of the family comfort and peace determines whether the Three-generation stories of the Joseon Dynasty, received an important narrative of men and axis formation. In a gauze-like situation of this problem in the Three-generation stories of the Joseon Dynasty, a personal desire or toughness in confined without the dimension of the entire family. And extrinsic psychological approach against the background of the wall in the main narrative of the sufferings of women of Korean novels, approached significance.

Regeneration of the retina: toward stem cell therapy for degenerative retinal diseases

  • Jeon, Sohee;Oh, Il-Hoan
    • BMB Reports
    • /
    • v.48 no.4
    • /
    • pp.193-199
    • /
    • 2015
  • Degenerative retinal diseases affect millions of people worldwide, which can lead to the loss of vision. However, therapeutic approaches that can reverse this process are limited. Recent efforts have allowed the possibility of the stem cell-based regeneration of retinal cells and repair of injured retinal tissues. Although the direct differentiation of pluripotent stem cells into terminally differentiated photoreceptor cells comprises one approach, a series of studies revealed the intrinsic regenerative potential of the retina using endogenous retinal stem cells. Muller glial cells, ciliary pigment epithelial cells, and retinal pigment epithelial cells are candidates for such retinal stem cells that can differentiate into multiple types of retinal cells and be integrated into injured or developing retina. In this review, we explore our current understanding of the cellular identity of these candidate retinal stem cells and their therapeutic potential for cell therapy against degenerative retinal diseases. [BMB Reports 2015; 48(4): 193-199]

Human Induced Pluripotent Stem Cells : Clinical Significance and Applications in Neurologic Diseases

  • Chang, Eun-Ah;Jin, Sung-Won;Nam, Myung-Hyun;Kim, Sang-Dae
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.5
    • /
    • pp.493-501
    • /
    • 2019
  • The generation of human induced pluripotent stem cells (iPSCs) from somatic cells using gene transfer opens new areas for precision medicine with personalized cell therapy and encourages the discovery of essential platforms for targeted drug development. iPSCs retain the genome of the donor, may regenerate indefinitely, and undergo differentiation into virtually any cell type of interest using a range of published protocols. There has been enormous interest among researchers regarding the application of iPSC technology to regenerative medicine and human disease modeling, in particular, modeling of neurologic diseases using patient-specific iPSCs. For instance, Parkinson's disease, Alzheimer's disease, and spinal cord injuries may be treated with iPSC therapy or replacement tissues obtained from iPSCs. In this review, we discuss the work so far on generation and characterization of iPSCs and focus on recent advances in the use of human iPSCs in clinical setting.

Risk Factor for Recurrence in Completely Resected Stage IB Non-small Cell Lung Cancer (완전 절제된 IB기 비소세포폐암에서 수술 후 재발의 위험 인자)

  • Seok, Yang-Ki;Lee, Eung-Bae
    • Journal of Chest Surgery
    • /
    • v.40 no.10
    • /
    • pp.680-684
    • /
    • 2007
  • Background: Complete surgical resection is the most effective treatment for stage IB non-small cell lung cancer (NSCLC). Recurrence accounts for the disappointing survival rates after resection. There has been renewed interest in adjuvant therapy after complete resection. Appropriate selection of effective adjuvant therapy will depend on the prognostic factors for recurrence. Material and Method: The study included 114 patients with completely resected stage IB NSCLC. The variables selected for the study were gender, age, the type of resection, cell type, the degree of differentiation, the tumor size and the presence of visceral pleura invasion. The Kaplan-Meier method was used to estimate the survival and disease-free survival rate. The results were compared using the log rank test. Multivariate analysis was performed by Cox's proportional hazard model. Two-sided p-valves < 0.05 were considered to be statistically significant. Result: The 3-year overall survival and the disease-free survival rates were 87.0% and 79.4%, respectively. The degree of differentiation showed a significant influence on disease-free survival according to the univariate analysis. According to the multivariate analysis, a poor grade of differentiation was a significant poor prognostic factor. Conclusion: These results demonstrate that poor differentiation may be a poor prognostic factor for patients with completely resected IB NSCLC. Therefore, the patients with a poor grade of differentiation may require adjuvant therapies.

Possibility of Cancer Treatment by Cellular Differentiation into Adipocytes (지방세포로의 분화를 통한 악성 종양의 치료 가능성)

  • Byeong-Gyun Jeon;Sung-Ho Lee
    • Journal of Life Science
    • /
    • v.33 no.6
    • /
    • pp.512-522
    • /
    • 2023
  • Cancer with unlimited cell growth is a leading cause of death globally. Various cancer treatments, including surgery, chemotherapy, radiation therapy, immunotherapy, and targeted therapy, can be applied alone or in combination depending on the cancer type and stage. New treatments with fewer side effects than previous cancer treatments are continually under development and in demand. Undifferentiated stem cells with unlimited cell growth are gradually changed via cellular differentiation to arrest cell growth. In this study, we reviewed the possibility of treating cancer by using cellular differentiation into the adipocytes in cancer cells. In previous in vitro studies, oral antidiabetic drugs of the thiazolidinedione (TDZ) class, such as rosiglitazone and pioglitazone, were induced into the adipocytes in various cancer cell lines via increased peroxisome proliferator-activated receptor-γ (PPAR γ) expression and glucose uptake, which is the key regulator of adipogenesis and the energy metabolism pathway. The differentiated adipogenic cancer cells treated with TDZ inhibited cell growth and had a less cellulotoxic effect. This adipogenic differentiation treatment suggests a possible chemotherapy option in cancer cells with high and abnormal glucose metabolism levels. However, the effects of the in vivo adipogenic differentiation treatment need to be thoroughly investigated in different types of stem and normal cells with other side effects.