• 제목/요약/키워드: differential phosphorylation

검색결과 34건 처리시간 0.022초

Effects of a Phosphomimetic Mutant of RAP80 on Linear Polyubiquitin Binding Probed by Calorimetric Analysis

  • Thach, Thanh Trung;Jee, Jun-Goo;Lee, Sang-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1285-1289
    • /
    • 2012
  • RAP80 plays a key role in DNA damage responses by recognizing K63-linked polyubiquitin moieties through its two ubiquitin-interacting motif (UIM) domains. The linker between the two UIMs possesses a phosphorylation site, but the relationship between phosphorylation and polyubiquitin recognition remains elusive. We investigated the interaction between a phosphorylation-mimic RAP80 mutant S101E and linear polyubiquitins, structurally equivalent to the K63-linked ones, using isothermal titration calorimetry (ITC). ITC analysis revealed differential binding affinities for linear tetraubiquitin by otherwise equivalent UIMs in S101E. Mutational analysis supported such differential polyubiquitin recognition by S101E. Our results suggest a potential crosstalk between polyubiquitin recognition and phosphorylation in RAP80.

Phosphoproteomic Analysis of the Brain of Ovariectomized Adult Rat

  • Santos, Ilyn Lyzette;Kim, Kil-Soo;Kim, Jong-Sang;Lim, Jin-Kyu
    • Journal of Applied Biological Chemistry
    • /
    • 제54권2호
    • /
    • pp.101-107
    • /
    • 2011
  • Aging in females is associated with a reduced metabolic function, increased incidence of neurodegenerative diseases, and cognitive dysfunction, as a result of loss in gonadal function. The change can alter the states of phosphorylation on the proteins, which cause dramatic changes in the cellular location or activity of the proteins. In this study, the differential phosphorylation of the proteins responsible for the functions related to cognition was studied using the ovariectomized adult rats. Phosphoproteomic analysis using the cerebral and hippocampal tissues could identify 51 differentially phosphorylated proteins including 12 proteins for energy metabolism, 8 cytoskeletal proteins, 6 signaling proteins, and other functional proteins in the ovariectomized rats. Further, anti-oxidative enzymes, superoxide dismutase and peroxiredoxin-2, which are known to be inactivated by phosphorylation, were found to be differentially phosphorylated in the cerebellum and hippocampus of the ovariectomized rats, respectively. Many of the deactivated proteins by differential phosphorylation identified in this study were overlapped to those of Alzheimer's disease cases. These results will provide information for neurodegenerative learning and memory impairments in women as brought about by menopause.

Decrease of glycogen synthase kinase 3β phosphorylation in the rat nucleus accumbens shell is necessary for amphetamineinduced conditioned locomotor activity

  • Shin, Joong-Keun;Kim, Wha Young;Rim, Haeun;Kim, Jeong-Hoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제26권1호
    • /
    • pp.59-65
    • /
    • 2022
  • Phosphorylation levels of glycogen synthase kinase 3β (GSK3β) negatively correlated with psychomotor stimulant-induced locomotor activity. Locomotor sensitization induced by psychomotor stimulants was previously shown to selectively accompany the decrease of GSK3β phosphorylation in the nucleus accumbens (NAcc) core, suggesting that intact GSK3β activity in this region is necessary for psychomotor stimulants to produce locomotor sensitization. Similarly, GSK3β in the NAcc was also implicated in mediating the conditioned effects formed by the associations of psychomotor stimulants. However, it remains undetermined whether GSK3β plays a differential role in the two sub-regions (core and shell) of the NAcc in the expression of drug-conditioned behaviors. In the present study, we found that GSK3β phosphorylation was significantly lower in the NAcc shell obtained from rats expressing amphetamine (AMPH)-induced conditioned locomotor activity. Further, we demonstrated that these effects were normalized by treatment with lithium chloride, a GSK3β inhibitor. These results suggest that the behavior produced by AMPH itself and a conditioned behavior formed by associations with AMPH are differentially mediated by the two sub-regions of the NAcc.

The Pleiotropic Face of CREB Family Transcription Factors

  • Md. Arifur Rahman Chowdhury;Jungeun An;Sangyun Jeong
    • Molecules and Cells
    • /
    • 제46권7호
    • /
    • pp.399-413
    • /
    • 2023
  • cAMP responsive element-binding protein (CREB) is one of the most intensively studied phosphorylation-dependent transcription factors that provide evolutionarily conserved mechanisms of differential gene expression in vertebrates and invertebrates. Many cellular protein kinases that function downstream of distinct cell surface receptors are responsible for the activation of CREB. Upon functional dimerization of the activated CREB to cis-acting cAMP responsive elements within the promoters of target genes, it facilitates signal-dependent gene expression. From the discovery of CREB, which is ubiquitously expressed, it has been proven to be involved in a variety of cellular processes that include cell proliferation, adaptation, survival, differentiation, and physiology, through the control of target gene expression. In this review, we highlight the essential roles of CREB proteins in the nervous system, the immune system, cancer development, hepatic physiology, and cardiovascular function and further discuss a wide range of CREB-associated diseases and molecular mechanisms underlying the pathogenesis of these diseases.

Differential expression of the enzymes regulating myosin light chain phosphorylation are responsible for the slower relaxation of pulmonary artery than mesenteric artery in rats

  • Seung Beom Oh;Suhan Cho;Hyun Jong Kim;Sung Joon Kim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제28권1호
    • /
    • pp.49-57
    • /
    • 2024
  • While arterial tone is generally determined by the phosphorylation of Ser19 in myosin light chain (p-MLC2), Thr18/Ser19 diphosphorylation of MLC2 (pp-MLC2) has been suggested to hinder the relaxation of smooth muscle. In a dual-wire myography of rodent pulmonary artery (PA) and mesenteric artery (MA), we noticed significantly slower relaxation in PA than in MA after 80 mM KCl-induced condition (80K-contraction). Thus, we investigated the MLC2 phosphorylation and the expression levels of its regulatory enzymes; soluble guanylate cyclase (sGC), Rho-A dependent kinase (ROCK) and myosin light chain phosphatase target regulatory subunit (MYPT1). Immunoblotting showed higher sGC-α and ROCK2 in PA than MA, while sGC-β and MYPT1 levels were higher in MA than in PA. Interestingly, the level of pp-MLC2 was higher in PA than in MA without stimulation. In the 80K-contraction state, the levels of p-MLC2 and pp-MLC2 were commonly increased. Treatment with the ROCK inhibitor (Y27632, 10 µM) reversed the higher pp-MLC2 in PA. In the myography study, pharmacological inhibition of sGC (ODQ, 10 µM) slowed relaxation during washout, which was more pronounced in PA than in MA. The simultaneous treatment of Y27632 and ODQ reversed the impaired relaxation in PA and MA. Although treatment of PA with Y27632 alone could increase the rate of relaxation, it was still slower than that of MA without Y27632 treatment. Taken together, we suggest that the higher ROCK and lower MYPT in PA would have induced the higher level of MLC2 phosphorylation, which is responsible for the characteristic slow relaxation in PA.

HDAC4 Regulates Muscle Fiber Type-Specific Gene Expression Programs

  • Cohen, Todd J.;Choi, Moon-Chang;Kapur, Meghan;Lira, Vitor A.;Yan, Zhen;Yao, Tso-Pang
    • Molecules and Cells
    • /
    • 제38권4호
    • /
    • pp.343-348
    • /
    • 2015
  • Fiber type-specific programs controlled by the transcription factor MEF2 dictate muscle functionality. Here, we show that HDAC4, a potent MEF2 inhibitor, is predominantly localized to the nuclei in fast/glycolytic fibers in contrast to the sarcoplasm in slow/oxidative fibers. The cytoplasmic localization is associated with HDAC4 hyper-phosphorylation in slow/oxidative-fibers. Genetic reprogramming of fast/glycolytic fibers to oxidative fibers by active CaMKII or calcineurin leads to increased HDAC4 phosphorylation, HDAC4 nuclear export, and an increase in markers associated with oxidative fibers. Indeed, HDAC4 represses the MEF2-dependent, PGC-$1{\alpha}$-mediated oxidative metabolic gene program. Thus differential phosphorylation and localization of HDAC4 contributes to establishing fiber type-specific transcriptional programs.

INVOLVEMENT OF THE MODULATED-NEURONAL NITRIC OXIDE SYNTHASE ACTIVITIES THROUGH INTERACTIONS OF PROTEIN KINASES IN LEAD NEUROTOXICITY

  • Park, Ji-Young;Kang, Ju-Hee;Chung, Woon-Gye;Park, Chang-Shin
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2002년도 Molecular and Cellular Response to Toxic Substances
    • /
    • pp.188-189
    • /
    • 2002
  • This work aimed to identify neuronal cell toxicity induced by decrease of physiological NO production by differential phosphorylation of constitutive neuronal NO synthase (nNOS), which can be mediated by Ca2+-dependent PKC and/or CaM-KII activities activated by metals.(omitted)

  • PDF

Differential regulation of gene expression by RNA polymerase II in response to DNA damage

  • Heo, Jeong-Hwa;Han, Jeung-Whan;Lee, Hyang-Woo;Cho, Eun-Jung
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
    • /
    • pp.219.1-219.1
    • /
    • 2003
  • RNA polymerase II (pol II) is known to cycle between hyperphosphorylated and hypophosphorylated forms during transcription cycle. These extensive phosphorylation/dephosphorylation event occurs in the C-terminal domain (CTD) of the largest subunit of pol II which consists of a tandemly repeated heptapeptide motif with consensus of YSPTSPS. (omitted)

  • PDF

Restoration of the adipogenic gene expression by naringenin and naringin in 3T3-L1 adipocytes

  • Dayarathne, Lakshi A.;Ranaweera, Sachithra S.;Natraj, Premkumar;Rajan, Priyanka;Lee, Young Jae;Han, Chang-Hoon
    • Journal of Veterinary Science
    • /
    • 제22권4호
    • /
    • pp.55.1-55.17
    • /
    • 2021
  • Background: Naringenin and its glycoside naringin are well known citrus flavonoids with several therapeutic benefits. Although the anti-adipogenic effects of naringenin and naringin have been reported previously, the detailed mechanism underlying their anti-adipogenesis effects is poorly understood. Objectives: This study examined the anti-adipogenic effects of naringenin and naringin by determining differential gene expression patterns in these flavonoids-treated 3T3-L1 adipocytes. Methods: Lipid accumulation and triglyceride (TG) content were determined by Oil red O staining and TG assay. Glucose uptake was measured using a 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose fluorescent d-glucose analog. The phosphorylation levels of AMP-activated protein kinase (AMPK) and acetyl Co-A carboxylase (ACC) were observed via Western blot analysis. Differential gene expressions in 3T3-L1 adipocytes were evaluated via RNA sequencing analysis. Results: Naringenin and naringin inhibited both lipid accumulation and TG content, increased phosphorylation levels of both AMPK and ACC and decreased the expression level of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) in 3T3-L1 adipocytes. RNA sequencing analysis revealed that 32 up-regulated (> 2-fold) and 17 down-regulated (< 0.6-fold) genes related to lipid metabolism, including Acaca, Fasn, Scd1, Mogat1, Dgat, Lipin1, Cpt1a, and Lepr, were normalized to the control level in naringenin-treated adipocytes. In addition, 25 up-regulated (> 2-fold) and 25 down-regulated (< 0.6-fold) genes related to lipid metabolism, including Acaca, Fasn, Fabp5, Scd1, Srebf1, Hmgcs1, Cpt1c, Lepr, and Lrp1, were normalized to the control level by naringin. Conclusions: The results indicate that naringenin and naringin have anti-adipogenic potentials that are achieved by normalizing the expression levels of lipid metabolism-related genes that were perturbed in differentiated 3T3-L1 cells.

참돔, Pagrus major의 성숙능력 유도시 증가된 난성숙 관련 mRNA (Increased mRNA Related Ovarian Maturation during Induction of Maturational Competence in Red Seabream, Pagrus major)

  • 최철영;장영진;융도사부
    • 한국발생생물학회지:발생과생식
    • /
    • 제4권1호
    • /
    • pp.125-131
    • /
    • 2000
  • Differential display-PCR 방법을 이용하여, hCG 처리에 의한 참돔, Pagrus major의 난성숙 능력의 획득 경과시간에 따라 새롭게 발현하는 cDNA를 해석하였다. Differential display-PCR과 5'RACE 방법을 이용하여, 2,662 염기와 434개의 아미노산을 코드하고 있는 cDNA의 전염기배열을 결정하였다. DNA의 데 이터베이스인 GenBank 및 EMBL을 이용하여 상동성을 검색한 결과, 본 cDNA와 높은 상동성을 나타낸 유전자는 검색되지 않았다. 따라서 본 cDNA는 참돔의 난성숙 능력 유도와 함께 그 발현량이 증가하는 난성숙 관련 유전자로 판단되었다. 또한 본 cDNA에서는 protein kinase C 인산화 및 casein kinaseII 인산화 consensus 배열의 존재가 확인되었다. 본 연구에서 cloning된 난성숙 관련 유전자는 난여포에 hCG 처리 9~24시간 후에 그 발현량이 증가하였으며, GH-II (300 ng/ml)로 배양한 난여포에서 특이적으로 증가하였다. 또한 in vivo 실험에서 난성숙 관련 유전자는 난성숙 능력 획득 이전의 난소에서는 거의 발현하지 않았으나, 난성숙 능력을 획득한 난소에서 강하게 발현된 점으로 보아, hCG에 의한 난성숙 능력 유도에 성숙기간 중 새롭게 합성되는 난성숙 관련 유전자가 관여할 가능성이 높다.

  • PDF