Browse > Article
http://dx.doi.org/10.4142/jvs.2021.22.e55

Restoration of the adipogenic gene expression by naringenin and naringin in 3T3-L1 adipocytes  

Dayarathne, Lakshi A. (College of Veterinary Medicine, Jeju National University)
Ranaweera, Sachithra S. (College of Veterinary Medicine, Jeju National University)
Natraj, Premkumar (College of Veterinary Medicine, Jeju National University)
Rajan, Priyanka (College of Veterinary Medicine, Jeju National University)
Lee, Young Jae (College of Veterinary Medicine, Jeju National University)
Han, Chang-Hoon (College of Veterinary Medicine, Jeju National University)
Publication Information
Journal of Veterinary Science / v.22, no.4, 2021 , pp. 55.1-55.17 More about this Journal
Abstract
Background: Naringenin and its glycoside naringin are well known citrus flavonoids with several therapeutic benefits. Although the anti-adipogenic effects of naringenin and naringin have been reported previously, the detailed mechanism underlying their anti-adipogenesis effects is poorly understood. Objectives: This study examined the anti-adipogenic effects of naringenin and naringin by determining differential gene expression patterns in these flavonoids-treated 3T3-L1 adipocytes. Methods: Lipid accumulation and triglyceride (TG) content were determined by Oil red O staining and TG assay. Glucose uptake was measured using a 2-[N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose fluorescent d-glucose analog. The phosphorylation levels of AMP-activated protein kinase (AMPK) and acetyl Co-A carboxylase (ACC) were observed via Western blot analysis. Differential gene expressions in 3T3-L1 adipocytes were evaluated via RNA sequencing analysis. Results: Naringenin and naringin inhibited both lipid accumulation and TG content, increased phosphorylation levels of both AMPK and ACC and decreased the expression level of 3-hydroxy-3-methylglutaryl CoA reductase (HMGCR) in 3T3-L1 adipocytes. RNA sequencing analysis revealed that 32 up-regulated (> 2-fold) and 17 down-regulated (< 0.6-fold) genes related to lipid metabolism, including Acaca, Fasn, Scd1, Mogat1, Dgat, Lipin1, Cpt1a, and Lepr, were normalized to the control level in naringenin-treated adipocytes. In addition, 25 up-regulated (> 2-fold) and 25 down-regulated (< 0.6-fold) genes related to lipid metabolism, including Acaca, Fasn, Fabp5, Scd1, Srebf1, Hmgcs1, Cpt1c, Lepr, and Lrp1, were normalized to the control level by naringin. Conclusions: The results indicate that naringenin and naringin have anti-adipogenic potentials that are achieved by normalizing the expression levels of lipid metabolism-related genes that were perturbed in differentiated 3T3-L1 cells.
Keywords
Naringenin; naringin; adipogenesis; gene expression; RNA sequencing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Park J, Kim HL, Jung Y, Ahn KS, Kwak HJ, Um JY. Bitter orange (Citrus aurantium Linne) improves obesity by regulating adipogenesis and thermogenesis through AMPK activation. Nutrients. 2019;11(9):1988.   DOI
2 Hardie DG, Pan DA. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem Soc Trans. 2002;30(Pt 6):1064-1070.   DOI
3 Claussnitzer M, Skurk T, Hauner H, Daniel H, Rist MJ. Effect of flavonoids on basal and insulin-stimulated 2-deoxyglucose uptake in adipocytes. Mol Nutr Food Res. 2011;55 Suppl 1:S26-S34.   DOI
4 Ranaweera SS, Dissanayake CY, Natraj P, Lee YJ, Han CH. Anti-inflammatory effect of sulforaphane on LPS-stimulated RAW 264.7 cells and ob/ob mice. J Vet Sci. 2020;21(6):e91.   DOI
5 Guo X, Liu J, Cai S, Wang O, Ji B. Synergistic interactions of apigenin, naringin, quercetin and emodin on inhibition of 3T3-L1 preadipocyte differentiation and pancreas lipase activity. Obes Res Clin Pract. 2016;10(3):327-339.   DOI
6 Ha T, Trung TN, Phuong TT, Yim N, Chen QC, Bae K. The selected flavonol glycoside derived from Sophorae Flos improves glucose uptake and inhibits adipocyte differentiation via activation AMPK in 3T3-L1 cells. Bioorg Med Chem Lett. 2010;20(20):6076-6081.   DOI
7 Bjorbaek C. Central leptin receptor action and resistance in obesity. J Investig Med. 2009;57(7):789-794.   DOI
8 Alam MA, Subhan N, Rahman MM, Uddin SJ, Reza HM, Sarker SD. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv Nutr. 2014;5(4):404-417.   DOI
9 Eberle D, Clement K, Meyre D, Sahbatou M, Vaxillaire M, Le Gall A, et al. SREBF-1 gene polymorphisms are associated with obesity and type 2 diabetes in French obese and diabetic cohorts. Diabetes. 2004;53(8):2153-2157.   DOI
10 Peterfy M, Phan J, Xu P, Reue K. Lipodystrophy in the fld mouse results from mutation of a new gene encoding a nuclear protein, lipin. Nat Genet. 2001;27(1):121-124.   DOI
11 Lee SH, Park YB, Bae KH, Bok SH, Kwon YK, Lee ES, et al. Cholesterol-lowering activity of naringenin via inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase and acyl coenzyme A:cholesterol acyltransferase in rats. Ann Nutr Metab. 1999;43(3):173-180.   DOI
12 Hillgartner FB, Salati LM, Goodridge AG. Physiological and molecular mechanisms involved in nutritional regulation of fatty acid synthesis. Physiol Rev. 1995;75(1):47-76.   DOI
13 Jiang Z, Michal JJ, Tobey DJ, Daniels TF, Rule DC, Macneil MD. Significant associations of stearoyl-CoA desaturase (SCD1) gene with fat deposition and composition in skeletal muscle. Int J Biol Sci. 2008;4(6):345-351.
14 Hall AM, Kou K, Chen Z, Pietka TA, Kumar M, Korenblat KM, et al. Evidence for regulated monoacylglycerol acyltransferase expression and activity in human liver. J Lipid Res. 2012;53(5):990-999.   DOI
15 Constantin RP, Constantin RP, Bracht A, Yamamoto NS, Ishii-Iwamoto EL, Constantin J. Molecular mechanisms of citrus flavanones on hepatic gluconeogenesis. Fitoterapia. 2014;92:148-162.   DOI
16 Ceddia RB. The role of AMP-activated protein kinase in regulating white adipose tissue metabolism. Mol Cell Endocrinol. 2013;366(2):194-203.   DOI
17 Jung UJ, Lee MK, Park YB, Kang MA, Choi MS. Effect of citrus flavonoids on lipid metabolism and glucose-regulating enzyme mRNA levels in type-2 diabetic mice. Int J Biochem Cell Biol. 2006;38(7):1134-1145.   DOI
18 Actis Dato V, Chiabrando GA. The role of low-density lipoprotein receptor-related protein 1 in lipid metabolism, glucose homeostasis and inflammation. Int J Mol Sci. 2018;19(6):1780.   DOI
19 Matsumoto H, Sasaki K, Bessho T, Kobayashi E, Abe T, Sasazaki S, et al. The SNPs in the ACACA gene are effective on fatty acid composition in Holstein milk. Mol Biol Rep. 2012;39(9):8637-8644.   DOI
20 Guaita-Esteruelas S, Guma J, Masana L, Borras J. The peritumoural adipose tissue microenvironment and cancer. The roles of fatty acid binding protein 4 and fatty acid binding protein 5. Mol Cell Endocrinol. 2018;462(Pt B):107-118.   DOI
21 Lien DN, Quynh NT, Phuc DV, Phong VC, Huong PT. Effect of pomelo (citrus grandis (l). osbeck) peel extract on lipid-carbohydrate metabolic enzymes and blood lipid, glucose parameters in experimental obese and diabetic mice. VNU J Sci Nat Sci Technol. 2010;26(4):224-232.
22 Sun NN, Wu TY, Chau CF. Natural dietary and herbal products in anti-obesity treatment. Molecules. 2016;21(10):1351.   DOI
23 Morand C, Manach C, Crespy V, Remesy C. Respective bioavailability of quercetin aglycone and its glycosides in a rat model. Biofactors. 2000;12(1-4):169-174.   DOI
24 Kren V. Glycoside vs. aglycon: the role of glycosidic residue in biological activity. In: Fraser-Reid BO, Tatsuta K, Thiem J, editors. Glycoscience. Berlin: Springer; 2008, 2589-2644.
25 Xiao J. Dietary flavonoid aglycones and their glycosides: Which show better biological significance? Crit Rev Food Sci Nutr. 2017;57(9):1874-1905.
26 Ribeiro IA, Ribeiro MHL. Naringin and naringenin determination and control in grapefruit juice by a validated HPLC method. Food Control. 2008;19(4):432-438.   DOI
27 Fang XK, Gao J, Zhu DN. Kaempferol and quercetin isolated from Euonymus alatus improve glucose uptake of 3T3-L1 cells without adipogenesis activity. Life Sci. 2008;82(11-12):615-622.   DOI
28 Rajappa R, Sireesh D, Salai MB, Ramkumar KM, Sarvajayakesavulu S, Madhunapantula SV. Treatment with naringenin elevates the activity of transcription factor Nrf2 to protect pancreatic β-cells from streptozotocin-induced diabetes in vitro and in vivo. Front Pharmacol. 2019;9:1562.   DOI
29 Mahmoud AM, Hernandez Bautista RJ, Sandhu MA, Hussein OE. Beneficial effects of citrus flavonoids on cardiovascular and metabolic health. Oxid Med Cell Longev. 2019;2019:5484138.   DOI
30 Goldwasser J, Cohen PY, Yang E, Balaguer P, Yarmush ML, Nahmias Y. Transcriptional regulation of human and rat hepatic lipid metabolism by the grapefruit flavonoid naringenin: role of PPARalpha, PPARgamma and LXRalpha. PLoS One. 2010;5(8):e12399.   DOI
31 Gao XF, Chen W, Kong XP, Xu AM, Wang ZG, Sweeney G, et al. Enhanced susceptibility of Cpt1c knockout mice to glucose intolerance induced by a high-fat diet involves elevated hepatic gluconeogenesis and decreased skeletal muscle glucose uptake. Diabetologia. 2009;52(5):912-920.   DOI
32 Harris CA, Haas JT, Streeper RS, Stone SJ, Kumari M, Yang K, et al. DGAT enzymes are required for triacylglycerol synthesis and lipid droplets in adipocytes. J Lipid Res. 2011;52(4):657-667.   DOI
33 Smith SJ, Cases S, Jensen DR, Chen HC, Sande E, Tow B, et al. Obesity resistance and multiple mechanisms of triglyceride synthesis in mice lacking Dgat. Nat Genet. 2000;25(1):87-90.   DOI
34 Bonnefont JP, Djouadi F, Prip-Buus C, Gobin S, Munnich A, Bastin J. Carnitine palmitoyltransferases 1 and 2: biochemical, molecular and medical aspects. Mol Aspects Med. 2004;25(5-6):495-520.   DOI
35 Morton GJ, Niswender KD, Rhodes CJ, Myers MG Jr, Blevins JE, Baskin DG, et al. Arcuate nucleus-specific leptin receptor gene therapy attenuates the obesity phenotype of Koletsky (fa(k)/fa(k)) rats. Endocrinology. 2003;144(5):2016-2024.   DOI
36 Kang SW, Kang SI, Shin HS, Yoon SA, Kim JH, Ko HC, et al. Sasa quelpaertensis Nakai extract and its constituent p-coumaric acid inhibit adipogenesis in 3T3-L1 cells through activation of the AMPK pathway. Food Chem Toxicol. 2013;59:380-385.   DOI
37 Veitch NC, Grayer RJ. Flavonoids and their glycosides, including anthocyanins. Nat Prod Rep. 2011;28(10):1626-1695.   DOI
38 Havsteen BH. The biochemistry and medical significance of the flavonoids. Pharmacol Ther. 2002;96(2-3):67-202.   DOI
39 Ameer B, Weintraub RA, Johnson JV, Yost RA, Rouseff RL. Flavanone absorption after naringin, hesperidin, and citrus administration. Clin Pharmacol Ther. 1996;60(1):34-40.   DOI
40 Xu L, Li Y, Dai Y, Peng J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol Res. 2018;130:451-465.   DOI
41 Richard AJ, Amini-Vaughan Z, Ribnicky DM, Stephens JM. Naringenin inhibits adipogenesis and reduces insulin sensitivity and adiponectin expression in adipocytes. Evid Based Complement Alternat Med. 2013;2013:549750.
42 Quintana AM, Hernandez JA, Gonzalez CG. Functional analysis of the zebrafish ortholog of HMGCS1 reveals independent functions for cholesterol and isoprenoids in craniofacial development. PLoS One. 2017;12(7):e0180856.   DOI
43 Rizzatti V, Boschi F, Pedrotti M, Zoico E, Sbarbati A, Zamboni M. Lipid droplets characterization in adipocyte differentiated 3T3-L1 cells: size and optical density distribution. Eur J Histochem. 2013;57(3):e24.
44 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357-359.   DOI
45 Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80.   DOI
46 Hsiu SL, Huang TY, Hou YC, Chin DH, Chao PDL. Comparison of metabolic pharmacokinetics of naringin and naringenin in rabbits. Life Sci. 2002;70(13):1481-1489.   DOI
47 Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: an overview. Sci World J. 2013;2013:162750.   DOI
48 Mauvoisin D, Mounier C. Hormonal and nutritional regulation of SCD1 gene expression. Biochimie. 2011;93(1):78-86.   DOI
49 Pu P, Gao DM, Mohamed S, Chen J, Zhang J, Zhou XY, et al. Naringin ameliorates metabolic syndrome by activating AMP-activated protein kinase in mice fed a high-fat diet. Arch Biochem Biophys. 2012;518(1):61-70.   DOI
50 Rebello CJ, Greenway FL, Lau FH, Lin Y, Stephens JM, Johnson WD, et al. Naringenin promotes thermogenic gene expression in human white adipose tissue. Obesity (Silver Spring). 2019;27(1):103-111.   DOI