• Title/Summary/Keyword: differential operator

Search Result 254, Processing Time 0.02 seconds

Generalized Higher Order Energy Based Instantaneous Amplitude and Frequency Estimation and Their Applications to Power Disturbance Detection

  • Iem, Byeong-Gwan
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.162-166
    • /
    • 2012
  • The instantaneous amplitude (IA) based on the higher order differential energy operator is proposed. And its general form for arbitrary order is also proposed. The various definitions of the IA and the instantaneous frequency (IF) estimators are considered. The IA and IF estimators based on the energy operators need less computational cost than the conventional IF and IA estimators exploiting the Hilbert transform. The IF and IA estimators are compared in terms of the frequency and amplitude tracking accuracy of the AM-FM signals. For noiseless case, the IA and IF estimators based on the Teager-Kaiser energy operator show better tracking performance than the IF and IA estimators based on the higher energy operators. However, under noisy condition, the IF and IA estimator based on the higher order energy operators with the order 3 and 4 show better tracking than the Teager-Kaiser energy based estimators. The IF and IA estimators are applied to signals in the various power anomalies to show their usefulness as the disturbance detectors.

Some properties of a Certain family of Meromorphically Univalent Functions defined by an Integral Operator

  • Aghalary, Rasoul
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.379-385
    • /
    • 2008
  • Making use of a linear operator, we introduce certain subclass of meromorphically univalent functions in the punctured unit disk and study its properties including some inclusion results, coefficient and distortion problems. Our result generalize many results known in the literature.

Argument Estimates Of Certain Meromorphic Functions

  • Cho, Nak-Eun
    • Communications of the Korean Mathematical Society
    • /
    • v.15 no.2
    • /
    • pp.263-274
    • /
    • 2000
  • The object of the present paper is to obtain some argu-ment properties of certain mermorphic functions in the punctured open unit disk. Furthermore, we investigate their integral preserving properties in a sector.

  • PDF

Application of Differential Evolution to Dynamic Economic Dispatch Problem with Transmission Losses under Various Bidding Strategies in Electricity Markets

  • Rampriya, B.;Mahadevan, K.;Kannan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.681-688
    • /
    • 2012
  • This paper presents the application of Differential Evolution (DE) algorithm to obtain a solution for Bid Based Dynamic Economic Dispatch (BBDED) problem including the transmission losses and to maximize the social profit in a deregulated power system. The IEEE-30 bus test system with six generators, two customers and two trading periods are considered under various bidding strategies in a day-ahead electricity market. By matching the bids received from supplying and distributing entities, the Independent System Operator (ISO) maximize the social profit, (with the choices available). The simulation results of DE are compared with the results of Particle swarm optimization (PSO). The results demonstrate the potential of DE algorithm and show its effectiveness to solve BBDED.

RADIUS OF FULLY STARLIKENESS AND FULLY CONVEXITY OF HARMONIC LINEAR DIFFERENTIAL OPERATOR

  • Liu, ZhiHong;Ponnusamy, Saminathan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.3
    • /
    • pp.819-835
    • /
    • 2018
  • Let $f=h+{\bar{g}}$ be a normalized harmonic mapping in the unit disk $\mathbb{D}$. In this paper, we obtain the sharp radius of univalence, fully starlikeness and fully convexity of the harmonic linear differential operators $D^{\epsilon}{_f}=zf_z-{\epsilon}{\bar{z}}f_{\bar{z}}({\mid}{\epsilon}{\mid}=1)$ and $F_{\lambda}(z)=(1-{\lambda)f+{\lambda}D^{\epsilon}{_f}(0{\leq}{\lambda}{\leq}1)$ when the coefficients of h and g satisfy harmonic Bieberbach coefficients conjecture conditions. Similar problems are also solved when the coefficients of h and g satisfy the corresponding necessary conditions of the harmonic convex function $f=h+{\bar{g}}$. All results are sharp. Some of the results are motivated by the work of Kalaj et al. [8].

Hybrid Fireworks Algorithm with Dynamic Coefficients and Improved Differential Evolution

  • Li, Lixian;Lee, Jaewan
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.19-27
    • /
    • 2021
  • Fireworks Algorithm (FWA) is a new heuristic swarm intelligent algorithm inspired by the natural phenomenon of the fireworks explosion. Though it is an effective algorithm for solving optimization problems, FWA has a slow convergence rate and less information sharing between individuals. In this paper, we improve the FWA. Firstly, explosion operator and explosion amplitude are analyzed in detail. The coefficient of explosion amplitude and explosion operator change dynamically with iteration to balance the exploitation and exploration. The convergence performance of FWA is improved. Secondly, differential evolution and commensal learning (CDE) significantly increase the information sharing between individuals, and the diversity of fireworks is enhanced. Comprehensive experiment and comparison with CDE, FWA, and VACUFWA for the 13 benchmark functions show that the improved algorithm was highly competitive.

SEMI-ANALYTICAL SOLUTION TO A COUPLED LINEAR INCOMMENSURATE SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS

  • Iqbal M. Batiha;Nashat Alamarat;Shameseddin Alshorm;O. Y. Ababneh;Shaher Momani
    • Nonlinear Functional Analysis and Applications
    • /
    • v.28 no.2
    • /
    • pp.449-471
    • /
    • 2023
  • In this paper, we study a linear system of homogeneous commensurate /incommensurate fractional-order differential equations by developing a new semi-analytical scheme. In particular, by decoupling the system into two fractional-order differential equations, so that the first equation of order (δ + γ), while the second equation depends on the solution for the first equation, we have solved the under consideration system, where 0 < δ, γ ≤ 1. With the help of using the Adomian decomposition method (ADM), we obtain the general solution. The efficiency of this method is verified by solving several numerical examples.

ON A TYPE OF DIFFERENTIAL CALCULUS IN THE FRAME OF GENERALIZED HILFER INTEGRO-DIFFERENTIAL EQUATION

  • Mohammed N. Alkord;Sadikali L. Shaikh;Mohammed B. M. Altalla
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.83-98
    • /
    • 2024
  • In this paper, we investigate the existence and uniqueness of solutions to a new class of integro-differential equation boundary value problems (BVPs) with ㄒ-Hilfer operator. Our problem is converted into an equivalent fixed-point problem by introducing an operator whose fixed points coincide with the solutions to the given problem. Using Banach's and Schauder's fixed point techniques, the uniqueness and existence result for the given problem are demonstrated. The stability results for solutions of the given problem are also discussed. In the end. One example is provided to demonstrate the obtained results