Browse > Article
http://dx.doi.org/10.4134/BKMS.b170289

RADIUS OF FULLY STARLIKENESS AND FULLY CONVEXITY OF HARMONIC LINEAR DIFFERENTIAL OPERATOR  

Liu, ZhiHong (School of Mathematics and Econometrics Hunan University)
Ponnusamy, Saminathan (Department of Mathematics Indian Institute of Technology Madras)
Publication Information
Bulletin of the Korean Mathematical Society / v.55, no.3, 2018 , pp. 819-835 More about this Journal
Abstract
Let $f=h+{\bar{g}}$ be a normalized harmonic mapping in the unit disk $\mathbb{D}$. In this paper, we obtain the sharp radius of univalence, fully starlikeness and fully convexity of the harmonic linear differential operators $D^{\epsilon}{_f}=zf_z-{\epsilon}{\bar{z}}f_{\bar{z}}({\mid}{\epsilon}{\mid}=1)$ and $F_{\lambda}(z)=(1-{\lambda)f+{\lambda}D^{\epsilon}{_f}(0{\leq}{\lambda}{\leq}1)$ when the coefficients of h and g satisfy harmonic Bieberbach coefficients conjecture conditions. Similar problems are also solved when the coefficients of h and g satisfy the corresponding necessary conditions of the harmonic convex function $f=h+{\bar{g}}$. All results are sharp. Some of the results are motivated by the work of Kalaj et al. [8].
Keywords
harmonic mappings; harmonic differential operator; coefficient inequality; radius of univalence; fully starlike harmonic mappings; fully convex harmonic mappings;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3-25.   DOI
2 L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), no. 1-2, 137-152.   DOI
3 P. Duren, Harmonic mappings in the plane, Cambridge Tracts in Mathematics, 156, Cambridge University Press, Cambridge, 2004.
4 J. M. Jahangiri, Coefficient bounds and univalence criteria for harmonic functions with negative coefficients, Ann. Univ. Mariae Curie-Sk lodowska Sect. A 52 (1998), no. 2, 57-66.
5 J. M. Jahangiri, Harmonic functions starlike in the unit disk, J. Math. Anal. Appl. 235 (1999), no. 2, 470-477.   DOI
6 D. Kalaj, S. Ponnusamy, and M. Vuorinen, Radius of close-to-convexity and fully star-likeness of harmonic mappings, Complex Var. Elliptic Equ. 59 (2014), no. 4, 539-552.   DOI
7 H. Lewy, On the non-vanishing of the Jacobian in certain one-to-one mappings, Bull. Amer. Math. Soc. 42 (1936), no. 10, 689-692.   DOI
8 S. Ponnusamy, A. Sairam Kaliraj, and V. V. Starkov, Sections of univalent harmonic mappings, Indag. Math. (N.S.) 28 (2017), no. 2, 527-540.   DOI
9 S. Ponnusamy, H. Yamamoto, and H. Yanagihara, Variability regions for certain families of harmonic univalent mappings, Complex Var. Elliptic Equ. 58 (2013), no. 1, 23-34.   DOI
10 T. Sheil-Small, Constants for planar harmonic mappings, J. London Math. Soc. 42 (1990), no. 2, 237-248.
11 X.-T. Wang, X.-Q. Liang, and Y.-L. Zhang, Precise coefficient estimates for close-to-convex harmonic univalent mappings, J. Math. Anal. Appl. 263 (2001), no. 2, 501-509.   DOI
12 J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. 17 (1915), no. 1, 12-22.   DOI
13 M. Chuaqui, P. Duren, and B. Osgood, Curvature properties of planar harmonic mappings, Comput. Methods Funct. Theory 4 (2004), no. 1, 127-142.   DOI
14 S. Ponnusamy and A. S. Kaliraj, Univalent harmonic mappings convex in one direction, Anal. Math. Phys. 4 (2014), no. 3, 221-236.   DOI
15 S. Ponnusamy and A. Rasila, Planar harmonic and quasiregular mappings, in Topics in modern function theory, 267-333, Ramanujan Math. Soc. Lect. Notes Ser., 19, Ramanujan Math. Soc., Mysore, 2013.