• 제목/요약/키워드: differential evolution algorithms

검색결과 38건 처리시간 0.024초

차분진화 알고리즘을 이용한 회전형 역 진자 시스템의 최적 퍼지 제어기 설계 (Design of Optimized Fuzzy Controller for Rotary Inverted Pendulum System Using Differential Evolution)

  • 김현기;이동진;오성권
    • 전기학회논문지
    • /
    • 제60권2호
    • /
    • pp.407-415
    • /
    • 2011
  • In this study, we propose the design of optimized fuzzy controller for the rotary inverted pendulum system by using differential evolution algorithm. The structure of the differential evolution algorithm has a simple structure and its convergence to optimal values is superb in comparison to other optimization algorithms. Also the differential evolution algorithm is easier to use because it have simpler mathematical operators and have much less computational time when compared with other optimization algorithms. The rotary inverted pendulum system is nonlinear and has a unstable motion. The objective is to control the position of the rotating arm and to make the pendulum to maintain the unstable equilibrium point at vertical position. The output performance of the proposed fuzzy controller is considered from the viewpoint of performance criteria such as overshoot, steady-state error, and settling time through simulation and practical experiment. From the result of both simulation and practical experiment, we evaluate and analyze the performance of the proposed optimal fuzzy controller from the comparison between PGAs and differential evolution algorithms. Also we show the superiority of the output performance as well as the characteristic of differential evolution algorithm.

Differential Evolution Algorithms Solving a Multi-Objective, Source and Stage Location-Allocation Problem

  • Thongdee, Thongpoon;Pitakaso, Rapeepan
    • Industrial Engineering and Management Systems
    • /
    • 제14권1호
    • /
    • pp.11-21
    • /
    • 2015
  • The purpose of this research is to develop algorithms using the Differential Evolution Algorithm (DE) to solve a multi-objective, sources and stages location-allocation problem. The development process starts from the design of a standard DE, then modifies the recombination process of the DE in order improve the efficiency of the standard DE. The modified algorithm is called modified DE. The proposed algorithms have been tested with one real case study (large size problem) and 2 randomly selected data sets (small and medium size problems). The computational results show that the modified DE gives better solutions and uses less computational time than the standard DE. The proposed heuristics can find solutions 0 to 3.56% different from the optimal solution in small test instances, while differences are 1.4-3.5% higher than that of the lower bound generated by optimization software in medium and large test instances, while using more than 99% less computational time than the optimization software.

개선된 미분 진화 알고리즘에 의한 퍼지 모델의 설계 (Design of Fuzzy Models with the Aid of an Improved Differential Evolution)

  • 김현기;오성권
    • 한국지능시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.399-404
    • /
    • 2012
  • Evolutionary algorithms such as genetic algorithm (GA) have been proven their effectiveness when applying to the design of fuzzy models. However, it tends to suffer from computationally expensWive due to the slow convergence speed. In this study, we propose an approach to develop fuzzy models by means of an improved differential evolution (IDE) to overcome this limitation. The improved differential evolution (IDE) is realized by means of an orthogonal approach and differential evolution. With the invoking orthogonal method, the IDE can search the solution space more efficiently. In the design of fuzzy models, we concern two mechanisms, namely structure identification and parameter estimation. The structure identification is supported by the IDE and C-Means while the parameter estimation is realized via IDE and a standard least square error method. Experimental studies demonstrate that the proposed model leads to improved performance. The proposed model is also contrasted with the quality of some fuzzy models already reported in the literature.

Application of Opposition-based Differential Evolution Algorithm to Generation Expansion Planning Problem

  • Karthikeyan, K.;Kannan, S.;Baskar, S.;Thangaraj, C.
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.686-693
    • /
    • 2013
  • Generation Expansion Planning (GEP) is one of the most important decision-making activities in electric utilities. Least-cost GEP is to determine the minimum-cost capacity addition plan (i.e., the type and number of candidate plants) that meets forecasted demand within a pre specified reliability criterion over a planning horizon. In this paper, Differential Evolution (DE), and Opposition-based Differential Evolution (ODE) algorithms have been applied to the GEP problem. The original GEP problem has been modified by incorporating Virtual Mapping Procedure (VMP). The GEP problem of a synthetic test systems for 6-year, 14-year and 24-year planning horizons having five types of candidate units have been considered. The results have been compared with Dynamic Programming (DP) method. The ODE performs well and converges faster than DE.

Examination of three meta-heuristic algorithms for optimal design of planar steel frames

  • Tejani, Ghanshyam G.;Bhensdadia, Vishwesh H.;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • 제1권1호
    • /
    • pp.79-86
    • /
    • 2016
  • In this study, the three different meta-heuristics namely the Grey Wolf Optimizer (GWO), Stochastic Fractal Search (SFS), and Adaptive Differential Evolution with Optional External Archive (JADE) algorithms are examined. This study considers optimization of the planer frame to minimize its weight subjected to the strength and displacement constraints as per the American Institute of Steel and Construction - Load and Resistance Factor Design (AISC-LRFD). The GWO algorithm is associated with grey wolves' activities in the social hierarchy. The SFS algorithm works on the natural phenomenon of growth. JADE on the other hand is a powerful self-adaptive version of a differential evolution algorithm. A one-bay ten-story planar steel frame problem is examined in the present work to investigate the design ability of the proposed algorithms. The frame design is produced by optimizing the W-shaped cross sections of beam and column members as per AISC-LRFD standard steel sections. The results of the algorithms are compared. In addition, these results are also mapped with other state-of-art algorithms.

A Hybrid Mechanism of Particle Swarm Optimization and Differential Evolution Algorithms based on Spark

  • Fan, Debin;Lee, Jaewan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권12호
    • /
    • pp.5972-5989
    • /
    • 2019
  • With the onset of the big data age, data is growing exponentially, and the issue of how to optimize large-scale data processing is especially significant. Large-scale global optimization (LSGO) is a research topic with great interest in academia and industry. Spark is a popular cloud computing framework that can cluster large-scale data, and it can effectively support the functions of iterative calculation through resilient distributed datasets (RDD). In this paper, we propose a hybrid mechanism of particle swarm optimization (PSO) and differential evolution (DE) algorithms based on Spark (SparkPSODE). The SparkPSODE algorithm is a parallel algorithm, in which the RDD and island models are employed. The island model is used to divide the global population into several subpopulations, which are applied to reduce the computational time by corresponding to RDD's partitions. To preserve population diversity and avoid premature convergence, the evolutionary strategy of DE is integrated into SparkPSODE. Finally, SparkPSODE is conducted on a set of benchmark problems on LSGO and show that, in comparison with several algorithms, the proposed SparkPSODE algorithm obtains better optimization performance through experimental results.

Comparison of Three Evolutionary Algorithms: GA, PSO, and DE

  • Kachitvichyanukul, Voratas
    • Industrial Engineering and Management Systems
    • /
    • 제11권3호
    • /
    • pp.215-223
    • /
    • 2012
  • This paper focuses on three very similar evolutionary algorithms: genetic algorithm (GA), particle swarm optimization (PSO), and differential evolution (DE). While GA is more suitable for discrete optimization, PSO and DE are more natural for continuous optimization. The paper first gives a brief introduction to the three EA techniques to highlight the common computational procedures. The general observations on the similarities and differences among the three algorithms based on computational steps are discussed, contrasting the basic performances of algorithms. Summary of relevant literatures is given on job shop, flexible job shop, vehicle routing, location-allocation, and multimode resource constrained project scheduling problems.

Differential Evolution Algorithm for Job Shop Scheduling Problem

  • Wisittipanich, Warisa;Kachitvichyanukul, Voratas
    • Industrial Engineering and Management Systems
    • /
    • 제10권3호
    • /
    • pp.203-208
    • /
    • 2011
  • Job shop scheduling is well-known as one of the hardest combinatorial optimization problems and has been demonstrated to be NP-hard problem. In the past decades, several researchers have devoted their effort to develop evolutionary algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) for job shop scheduling problem. Differential Evolution (DE) algorithm is a more recent evolutionary algorithm which has been widely applied and shown its strength in many application areas. However, the applications of DE on scheduling problems are still limited. This paper proposes a one-stage differential evolution algorithm (1ST-DE) for job shop scheduling problem. The proposed algorithm employs random key representation and permutation of m-job repetition to generate active schedules. The performance of proposed method is evaluated on a set of benchmark problems and compared with results from an existing PSO algorithm. The numerical results demonstrated that the proposed algorithm is able to provide good solutions especially for the large size problems with relatively fast computing time.

차분진화 알고리듬을 이용한 전역최적화 (Global Optimization Using Differential Evolution Algorithm)

  • 정재준;이태희
    • 대한기계학회논문집A
    • /
    • 제27권11호
    • /
    • pp.1809-1814
    • /
    • 2003
  • Differential evolution (DE) algorithm is presented and applied to global optimization in this research. DE suggested initially fur the solution to Chebychev polynomial fitting problem is similar to genetic algorithm(GA) including crossover, mutation and selection process. However, differential evolution algorithm is simpler than GA because it uses a vector concept in populating process. And DE turns out to be converged faster than CA, since it employs the difference information as pseudo-sensitivity In this paper, a trial vector and its control parameters of DE are examined and unconstrained optimization problems of highly nonlinear multimodal functions are demonstrated. To illustrate the efficiency of DE, convergence rates and robustness of global optimization algorithms are compared with those of simple GA.