
5972KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, Dec. 2019 5972
Copyright ⓒ 2019 KSII

A Hybrid Mechanism of Particle Swarm
Optimization and Differential Evolution

Algorithms based on Spark

Debin Fan1, 2 and Jaewan Lee2*
1 School of Information Science and Technology, Jiujiang University

Jiujiang, China
[e-mail: dbfan@kunsan.ac.kr]

2 Department of Information and Communication Engineering, Kunsan National University
Kunsan, South Korea

[e-mail: jwlee@kunsan.ac.kr]
*Corresponding author: Jaewan Lee

Received November 22, 2018; revised June 11, 2019; accepted October 12, 2019;

published December 31, 2019

Abstract

With the onset of the big data age, data is growing exponentially, and the issue of how to
optimize large-scale data processing is especially significant. Large-scale global optimization
(LSGO) is a research topic with great interest in academia and industry. Spark is a popular
cloud computing framework that can cluster large-scale data, and it can effectively support the
functions of iterative calculation through resilient distributed datasets (RDD). In this paper, we
propose a hybrid mechanism of particle swarm optimization (PSO) and differential evolution
(DE) algorithms based on Spark (SparkPSODE). The SparkPSODE algorithm is a parallel
algorithm, in which the RDD and island models are employed. The island model is used to
divide the global population into several subpopulations, which are applied to reduce the
computational time by corresponding to RDD’s partitions. To preserve population diversity
and avoid premature convergence, the evolutionary strategy of DE is integrated into
SparkPSODE. Finally, SparkPSODE is conducted on a set of benchmark problems on LSGO
and show that, in comparison with several algorithms, the proposed SparkPSODE algorithm
obtains better optimization performance through experimental results.

Keywords: Particle Swarm Optimization, Differential Evolution, Large-scale optimization,
Cloud Computing, Resilient Distributed Datasets

http://doi.org/10.3837/tiis.2019.12.010 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5973

1. Introduction

With the fast development of technology and society, large volumes of data are generated in
many real-world applications, such as deep neural network optimization, large-scale cluster
resource scheduling, and urban intelligent transportation systems. And so many optimization
problems become more and more complicated. Large-scale global optimization (LSGO)
problems attract much attention from the researchers in academia and industrial fields.

Recently, evolutionary algorithms (EAs), such as the genetic algorithm (GA), differential
evolution (DE), and particle swarm optimization (PSO), have been successfully applied in
many fields due to their versatility, reliability, and stability [1][2]. The PSO algorithm,
proposed in [3], is a stochastic search algorithm for simulating the foraging behavior of birds.
PSO is simple since fewer parameters need to be adjusted. As a result, it is extensively used in
function optimization, pattern recognition, and other practical application fields of EAs, and
significant results were achieved [4]. The premature convergence problem might easily occur
in the PSO algorithm because of its singularity, adversely affecting the performance of the
algorithm. Therefore, a hybrid algorithm that utilizes the global search ability of other
algorithms is widely used to overcome the shortcomings of PSO [5][6]. Zhang et al. [7]
presented a hybrid PSO with DE operator algorithm, which can provide the hell-shaped
mutations while preserving the particle swarm dynamics. Das et al. [8] explored several
schemes to control the convergence behaviors of PSO and DE by selecting the parameters
reasonably. The above-stated studies perform well in solving low-dimensional problems;
however, those studies might reduce the precision of the solution and deteriorate the efficiency
when facing LSGO problems.
 The cloud computing framework is one of the most feasible and reliable ways to solve
LSGO problems, as it parallels a huge amount of computing to achieve better operational
efficiency and scalability. Two popular cloud computing frameworks are Hadoop MapReduce
and Apache Spark [9]. McNabb et al. [10] demonstrated that PSO could be naturally adapted
to the MapReduce programming model. For large data sets, Aljarah et al. [11] introduced a
parallel version of PSO that is in MapReduce-based to get over the inefficiency of PSO
clustering. Wang et al. [12] presented a cooperative PSO algorithm using the MapReduce
model, which has better performance and a significant advantage in terms of time. There are
also some other EAs based on MapReduce [13]-[17]. However, MapReduce is a general batch
processing computing model, which needs to read and write files frequently and lacks an
effective mechanism of parallel computing. Spark has a new resilient distributed datasets
(RDD) model [18]. RDD is based on memory calculation, which can effectively support
iterative calculation. Deng et al. [19] proposed a parallel DE based on RDD, which can
decrease the computational time of the objective function. Teijeiro et al. [20] presented two
different parallel schemes based on Spark for DE algorithm. For LSGO problems, Peng et al.
[21] designed a Spark-based DE with commensal learning and uniform local search. Cheng et
al. [22] presented a distributed RDD-based PSO algorithm, which has high precision and
acceleration. RDD greatly speeds up program processing, allowing Spark to be used in a
variety of large-scale processing scenarios.

In this paper, we introduce a hybrid mechanism of PSO and DE algorithms based on Spark
(SparkPSODE) for LSGO problems. The proposed SparkPSODE begins with PSO. Then
SparkPSODE uses the evolution strategy of the DE algorithm to enhance population diversity
and avoid the local convergence. SparkPSODE realizes its parallelization using the RDD and

5974 Fan et al.: A Hybrid Mechanism of Particle Swarm Optimization and Differential
Evolution Algorithms based on Spark

island models for improving the convergence speed. Finally, by testing the benchmark
functions on LSGO, in comparison with the other algorithms, experiments prove the
effectiveness of SparkPSODE. Our proposal is applicable for large-scale data clustering, and
also offers a novel solution to solve optimization problems with big data.

The remaining of this article is structured as follows. We introduce the classical PSO and
DE in Section 2. Section 3 shows the details of our proposed SparkPSODE algorithm.
Numerical experimental tests are presented in Section 4. Finally, we conclude the paper in the
last section.

2. The classical PSO and DE algorithms

2.1 Particle swarm optimization
In PSO [23], each bird is one particle that denotes one point in the D-dimensional search space.
The population consists of n particles, each of which has one current position and velocity,
shown in Eqs. (1) and (2).

1, 2,[...,]i i i idX x x x= (1)

 1, 2,[...,]i i i idV v v v= (2)

where i =1,2,..., N. Each particle flies in search space, and the optimal solution is found by
iterations.

1, 2,[...,]i i i idP p p p= (3)

1, 2,[...,]g g g gdP p p p= (4)
Eq. (3) represents the position of the personal best of particle, and Eq. (4) denotes the position
of the global best particle.

During each iteration, the position x and velocity v of the particle is updated using Eqs. (5)
and (6), respectively.

1 1 2 2(1) () (() ()) (())id id id id gd idv k v k c r p k x k c r p x kω+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ − (5)

(1) () (1)id id idx k x k v k+ = + + (6)

where k denotes the number of iterations, r1 and r2 are random values in the interval [0,1],
which can make groups be diversity. c1 and c2 denote two acceleration factors, in which the
particles have the ability to self-summarize and learn the excellent individual in the group,
thus approaching the particle's optimal solution and the group global optimal solution. In the
iterative process, adjusting these two parameters properly can reduce the disturbance of the
local convergence and speed up the convergence. ω is the inertia factor that influences the
exploration and development abilities of the particle. In the standard PSO algorithm, ω uses
the same value, resulting in particle diversity is greatly reduced. In this article, the inertia
factor of the linear decrement weight strategy [24] is used to improve particle diversity.

2.2 Differential evolution
DE [25] is a type of swarm intelligent algorithm that adopts the real coding method. In DE, the
mutation operation uses the mutation strategy; an individual is disturbed by the mutant vector
between the individuals in the population, and individual mutation is realized. Crossover can

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5975

be considered as a supplement to mutation. Moreover, the selection strategy is usually a
tournament choice rule.

The main steps of DE are as follows.

Step 1. Population initialization.
DE organizes a population of NP individuals in the D-dimensional search space, and then

individuals are initialized by Eq. (7).
, , , ,(0) (0,1) ()L U L

i j i j i j i jx x rand x x= + ⋅ − (7)

where i = 1,2,…, NP, j = 1,2,…, D, ,
U
i jx and ,

L
i jx are the upper and lower constraints, and

(0,1)rand ∈ represents a random number uniformly distributed among the numbers [0,1].

Step 2. Mutation.
DE usually achieves individual mutation through the mutant vector between individuals in

the population. The common mutation strategy randomly selects two different individuals, and
then the mutant vector is scaled, and the vector is synthesized, as shown in Eq. (8).

1 2 3
(1) () (() ())i r r rv g x g F x g x g+ = + ⋅ − (8)

where F is the scaling factor lying between 0 and 1, and r1, r2, r3, and i are random numbers
uniformly distributed among the numbers [1, NP] and 1 2 3r r r i≠ ≠ ≠ .

Step 3. Crossover.
After completing the previous step, the DE algorithm crosses the population { ()}ix g , and its

mutation intermediates { (1)}iv g + by the crossover probability, as shown in Eq. (9).
,

,
,

(1), (0,1)
(1)

(),
i j rand

i j
i j

v g if rand CR or j j
u g

x g otherwise
+ ≤ =+ =

 (9)

where randj is a randomly generated integer among the numbers [1, D], and []0,1CR∈ is the
crossover probability.

Step 4. Selection.
DE mainly utilizes the greedy strategy to choose a better solution for the next generation.

(1), ((1)) (())

(1)
(),
i i i

i
i

u g if f u g f x g
x g

x g otherwise
+ + ≤

+ =

 (10)

Step 5. Termination.
By performing the above operations, the DE algorithm stops searching and outputs the

optimal value when the cycle algebra exceeds the maximum evolutionary algebra or when
solution precision is required.

3. Proposed hybrid mechanism of PSO and DE algorithms based on
Spark

3.1 The Spark Cloud Platform
Apache Spark is an efficient and stretchable clustering computing system, which inherits
MapReduce’s linear scalability and fault tolerance on the Hadoop platform. However, Spark

5976 Fan et al.: A Hybrid Mechanism of Particle Swarm Optimization and Differential
Evolution Algorithms based on Spark

extends the MapReduce model in many ways and utilizes the RDD model for computing
large-scale data in parallel [26].

The RDD model is the core component of Spark. In essence, RDD is the element set of a
distributed cluster, which runs on different nodes of a cluster. In Spark, all the data operations
are used to create RDD, transform existing RDD, and invoke RDD operations. Each RDD
corresponds to one partition.

Users can create RDD in two ways: one is to read an external dataset, and the other is to
generate RDD in-memory calculations by functions, such as join and map. After RDD is
created, two kinds of operations can be performed: transformations and actions.
Transformation operations mainly include such as map, filter, flatMap. Action operations
mainly include such as count, collect, reduce, save. Transformation operations generate a new
RDD from an existing one. Action operations compute a result for the RDD, and the result is
returned to the driver program or stored in Hadoop Distributed File System (HDFS).

The difference between transformation operations and action operations is the method of
calculating RDD on Spark. In addition to transformation and action operations, RDD can also
be operated upon using the cache operation. The implementation mechanism of the RDD
model is based on the iterator, which makes data access more efficient. The RDD computing
model in Spark is shown in Fig. 1.

Partition 1

Partition 2

Partition N

RDD

Compute

RDD

Compute

Compute Compute

Compute Compute

Fig. 1. RDD computing model

3.2 Island Model
In this paper, an island model [27] is utilized to realize the parallelization of the algorithm. The
island model is coarse-grained and shown in Fig. 2. In the parallelization process, the
population is divided into serval subpopulations, then each of which is evolved independently
in the iteration cycle. The implementation of the island model is mainly based on five
parameters as follows:

• The number of islands is the number of subpopulations. This value affects the
algorithm’s parallel efficiency and population diversity, so it should not be either too
high or too low.

• The migration topology refers to the logical model of individual migration. Common
migration topologies are ring, chain, and cascading topologies. In the SparkPSODE

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5977

algorithm, a ring+1+2 topology is utilized, in which each island is only connected
with two adjacent islands.

• The migration strategy is the strategy of replacing individuals in target subpopulation
with that from source subpopulation. A common strategy is replacing the worst
individuals in target subpopulation with the best individuals from source
subpopulation, which is termed "best-worst" strategy. Another possible strategy is
"best+random-worst", where the worst individuals in target subpopulation are
replaced with the best and random individuals from source subpopulation. A random
replacement strategy is a "random-random" strategy.

• The number of migration individuals determines the degree of communication
between the subpopulations, and should not to be too large or too small.

• The migration frequency is the algebra of migration interval. If it is too high, the
solution might fall into local optimal solution; if it is too low, the information might
not be fully shared among the subpopulations.

Fig. 2. Island Model

3.3 The proposed SparkPSODE algorithm
The SparkPSODE algorithm employs DE’s evolution strategy in the framework of PSO,
which is parallel and implemented based on Spark. Concretely, we firstly utilize DE/rand/1
mutation operator of DE. Subsequently, we apply the RDD and island models to realize the
parallel computing of SparkPSODE.

The details of our proposal can be presented as follows:
1) Dividing the global population into independent subpopulations by using parallelize in

Spark, and each subpopulation corresponds to a partition of the RDD model.
2) Calculating each particle’s fitness value, and then comparing and updating the position of

the personal best of particle and the position of the global best particle.
3) Using Eqs. (5) and (6) to change each particle’s position and velocity.
4) Using Eqs. (8), (9) and (10) to implement three operations of the DE algorithm toward the

updated position of each particle.
5) Repeat step 2 until the termination condition is satisfied.
6) Using collect to combine each partition for generating a new population and finding the

global optimum by reduce.

5978 Fan et al.: A Hybrid Mechanism of Particle Swarm Optimization and Differential
Evolution Algorithms based on Spark

 Algorithm 1 demonstrates the pseudocode of SparkPSODE. The flowchart of SparkPSODE
is given in Fig. 3. For clarity, the method of data storage utilized in Fig. 3 is described below:
the data is stored in key-value pairs, namely [keyi , valuei], where i = 1,2,..., m, m represents the
population number, keyi is an integer that is the index of the subpopulation of i, and valuei is a
list containing all the individuals in the subpopulation.

Algorithm 1. The pseudocode of SparkPSODE
Input:

NP: the number of population;
popsize: the size of subpopulation;
pbest: the best position of particle;
gbest: the optimal location of population;
migrationInterval: the migration frequency;
related parameters.

Output:
The global optimum.

1: Initialize the parameters: NP, popsize and t=0;
2: Randomly initialize the population;
3: Calculate each particle’s fitness function f (xi);
4: Map the subpopulations to RDD partitions (islands);
5: while termination criterion is not met do
6: while t < migrationInterval do
7: for i=1 to popsize do
8: if (f (xi) < f (pbesti)) then
9: pbesti = xi;
10: end if
11: if (f (xi) < f (gbest)) then
12: gbest = xi;
13: end if
14: Change the velocity and position of each particle by Eqs. (5) and (6);
15: Update the position of each particle by Eqs. (8) , (9) and (10);
16: Evaluate each particle’s fitness function f (xi);
17: end for
18: t++;
19: end while
20: Migrate individuals;
21: Collect the subpopulations.
22:end while

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5979

Island 1
(Subpopulation 1)

<k1,v1> <k2,v2> <kN,vN>

Start

Initial population

RDDIsland 2
(Subpopulation 2)

Island N
(Subpopulation N)

RDD

PSO-DE PSO-DE PSO-DE

…

…

…

Migration? Migration? Migration?

no

yes yes yes

no no

New population

Is termination
condition met?

no

yes

Output global optimum

End

Fig. 3. The flowchart of SparkPSODE

5980 Fan et al.: A Hybrid Mechanism of Particle Swarm Optimization and Differential
Evolution Algorithms based on Spark

4. Numerical experiments

4.1 Benchmark problems
Aiming to testify the optimization capability of SparkPSODE in solving LSGO problems,
eleven widely used benchmark problems [28] with size up to 1000 dimensions were selected
for analysis. The descriptions of these problems are presented in Table 1.

Table 1. Benchmark problems

Name Expression Value range Optimum

Sphere Model 1
2

() 1
Df x xi i∑= = [-100,100] 0

Schwefel’s
Problem 2.22 2 () 1 1

D
if x i

D xiix∑= = ∏+ =
[-10,10] 0

Schwefel’s
Problem 1.2 3

2
() ()1 1

D if x xi j j∑ ∑= = =
[-100,100] 0

Schwefel’s
Problem 2.21 4 () max { ,1 }f x x i Dii= ≤ ≤

[-100,100] 0

Generalized
Rosenbrock’s

Function
5

2 2 21() (100() (1))11
Df x x x xi i ii
−∑= − + −+=

[-30,30] 0

Step Function 6
2

() (0.5)1
Df x xi i∑= +=

[-100,100] 0

Quartic with
Noise 7

4
() [0,1)1

Df x ix randomi i∑= +=
[-1.28,1.28] 0

Generalized
Schwefel’s

Problem 2.26
8 () sin()1

Df x x xii i∑= −=
[-500,500] -418.9829*D

Generalized
Rastrigin’s
Function

9
2

() (10 cos(2) 10)1
Df x x xi i iπ∑= − +=

[-5.12,5.12] 0

Ackley’s
Function

10
1 2() 20 exp(0.2)1

1
exp(cos 2) 201

f x xii

x eii

D
D

D
D

π

= − − ∑ =

∑− + +=

[-32,32] 0

Generalized
Griewank
Function

11
1 2

() cos() 11 14000
D xif x xi ii i

D∑ ∏= − += =

[-600,600] 0

4.2 Experimental settings
In this study, we conducted the experiments on two PCs: one PC is with Intel Core i7-8700
3.20 GHz CPUs and 16 GB memory, and the other PC is with Intel Core i3-2120 3.30 GHz
CPUs and 4 GB memory. The operating systems of the two PCs are Ubuntu 16.04. Hadoop

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5981

2.2.0 and Spark 2.3.3 were installed in the two PCs. The proposed algorithm is implemented
by Scala and Java languages in IntelliJ IDEA 14.1.2. The main parameters and settings for
SparkPSODE are described in Table 2.

Table 2. The parameters of SparkPSODE

Parameters Definitions Value
NP The number of the population 100
D The size of the dimension 1000

Max_FEs The maximum number of fitness
evaluations 5,000,000

PSO
c1 Acceleration factor 2
c2 Acceleration factor 2
ω Inertia weight 0.4-0.9

DE F The scaling factor 0.5
CR The crossover probability 0.9

islands The number of islands 4
topology The migration topology ring+1+2

migrationIndividuals The number of migration individuals 15
migrationStrategy The migration strategy best-worst
migrationInterval The migration frequency 1000

4.3 Experimental results and analysis
Table 3 lists the statistical results of PSO, DECCG [29], SparkDECC [30], and SparkPSODE.
For a fair comparison, Max_FEs is set to 5,000,000, and all algorithms independently run 25
times for each benchmark problem. We analyze the experimental results by Wilcoxon's
rank-sum test. In Table 3, "-", "+", and "≈" represent the statistical results of the compared
algorithms being worse than, better than, and similar to that of SparkPSODE, respectively.

Table 3. Experimental results of PSO, DECCG, SparkDECC, and SparkPSODE

Fun PSO
(mean±std)

DECCG
(mean±std)

SparkDECC
(mean±std)

SparkPSODE
(mean±std)

1f 2.30E+06±2.79E+04 － 9.61E-29±3.11E-29 － 5.85E-13±1.62E-13 － 7.36E-65 ± 3.60E-64

2f 7.16E+04±3.30E+04 － 1.70E-14±1.77E-14 － 6.60E-07±1.00E-07 － 2.59E-35 ± 1.18E-34

3f 8.68E+08±6.51E+07 － 1.20E-03±6.70-04 － 5.31E+07±7.20E+06 － 8.02E-53 ± 3.93E-52

4f 4.01E+02±7.98E+00 － 3.19E-02±4.72E-03 － 9.76E+01±2.22E-01 － 0.00E+00±0.00E+00

5f 9.23E+12±1.29E+12 － 9.86E+02±4.11E-01 ＋ 1.62E+03±1.62E+02 － 9.93E+02 ± 3.38E+00

6f 2.30E+06±1.29E+05 － 0.00E+00±0.00E+00 ≈ 1.60E-01±4.73E-01 － 0.00E+00±0.00E+00

7f 3.48E+13±3.87E+12 － 2.62E-03±6.68E-04 ＋ 3.62E+00±1.67E-01 － 7.90E-03 ± 6.65E-03

8f -1.34E+05±4.51E+03 － -4.19E+05±9.28E-11 ＋ -6.11E+04±1.18E+03 － -2.47E+06 ±3.48E+05

9f 2.33E+06±1.35E+05 － 1.25E-14±7.49E-15 ＋ 1.10E+04±3.93E+01 － 1.56E+03±3.57E+03

10f 2.15E+01±3.77E-02 － 1.27E-13±7.11E-15 ＋ 4.55E-08±8.16E-09 ＋ 8.65E+00±1.06E+01

11f 5.75E+02±4.15E+01 － 9.50E-16±1.44E-16 － 3.54E-14±1.03E-14 － 0.00E+00±0.00E+00
-/+/≈ 11/0/0 5/5/1 10/1/0

5982 Fan et al.: A Hybrid Mechanism of Particle Swarm Optimization and Differential
Evolution Algorithms based on Spark

From Table 3, it can be observed that SparkPSODE consistently performs better than PSO
in all eleven benchmark functions. SparkPSODE is better than DECCG in functions f1, f2, f3, f4,
and f11. Especially, in functions f4, f6, and f11, SparkPSODE can even converge to 0. The
proposed SparkPSODE algorithm is superior to SparkDECC in ten benchmark functions. The
above analysis indicates that the SparkPSODE algorithm is effective.

Fig. 4. Convergence figure of f1

Fig. 5. Convergence figure of f3

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5983

Fig. 6. Convergence figure of f4

Fig. 7. Convergence figure of f7

5984 Fan et al.: A Hybrid Mechanism of Particle Swarm Optimization and Differential
Evolution Algorithms based on Spark

Fig. 8. Convergence figure of f10

Fig. 4 to Fig. 8 show the convergence process of four algorithms on functions f1, f3, f4, f7, and
f10, respectively. For f1, f3, and f4, SparkPSODE can obtain better convergence speed than other
algorithms.

Above all, we observe that the proposed SparkPSODE algorithm outperforms in terms of
solution accuracy and convergence speed as compared to the other algorithms.

4.4 The influence of the number of subpopulations
To analyze the effectiveness of the number of subpopulations on the performance of
SparkPSODE, different numbers of subpopulations, such as 1, 2, 4, and 5, were selected for
comparison experiments. In different subpopulations, the proposed algorithm was
independently tested 20 times. Table 4 and Table 5 record the averaged optimal values and
the averaged computational time of four different subpopulations, respectively. The results of
Table 4 show that the convergence accuracy of functions f1, f2, f3, f5, f6, f7, f9, and f11 improves
following the increase of subpopulation number, while the convergence accuracy of functions
f4, f8, and f10 are not enhanced. According to Table 5, we can see that the interaction time
between the subpopulations raises following the increase of subpopulation numbers on all the
eleven test functions. Overall, the appropriate number of subpopulations should be set for
achieving satisfying performance in the two aspects of time and accuracy.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5985

Table 4. Experimental results of SparkPSODE with different numbers of subpopulations

F/S 1 (mean±std) 2(mean±std) 4 (mean±std) 5(mean±std)
f1 7.78E+01±1.34E+02 3.23E+01 ± 9.41E+01 9.20E-65±4.01E-64 2.18E-44±9.51E-44
f2 3.91E+00± 6.57E+00 1.48E-04 ± 5.45E-04 6.20E-12±1.63E-11 6.77E-17±1.42E-16
f3 8.09E+00± 2.45E+01 2.03E-07 ± 8.82E-07 8.10E-29±3.53E-28 1.20E-52±5.22E-52
f4 2.70E-01±4.25E-01 1.50E-01±3.55E-01 3.82E-01±4.84E-01 1.24E-01±3.29E-01
f5 7.13E+03±8.31E+03 7.18E+03±8.44E+03 9.93E+02±3.28E+00 2.76E+03±5.29E+03
f6 6.89E+01±1.64E+02 4.62E+01±1.38E+02 2.24E+01±9.76E+01 0.00E+00±0.00E+00
f7 1.80E+04±3.59E+04 1.34E+04±3.20E+04 4.55E-03±1.01E-02 5.74E-03±8.96E-03
f8 -2.67E+06±3.56E+05 -2.47E+06±4.09E+05 -2.41E+06±4.17E+05 -2.38E+06±2.17E+05
f9 1.22E+03±2.95E+03 2.85E+03±4.36E+03 4.90E+02±2.14E+03 4.55E+02±1.99E+03
f10 1.52E+01±9.92E+00 1.95E+01±6.49E+00 1.41E+01±1.03E+01 1.84E+01±7.73E+00
f11 1.34E-01±2.63E-01 1.02E-01±2.43E-01 1.67E-01±2.90E-01 0.00E+00±0.00E+00

Table 5. The averaged computational time of SparkPSODE with different numbers of subpopulations

(ms)
F/S 1 2 4 5
f1 3.68E+04 6.81E+04 1.12E+05 1.36E+05
f2 2.85E+04 7.32E+04 1.21E+05 1.41E+05
f3 1.88E+05 2.09E+05 2.47E+05 2.69E+05
f4 4.13E+04 7.34E+04 1.14E+05 1.26E+05
f5 4.27E+04 8.10E+04 1.18E+05 1.29E+05
f6 4.20E+04 7.63E+04 1.23E+05 1.26E+05
f7 3.38E+04 8.03E+04 1.04E+05 1.43E+05
f8 5.67E+04 1.06E+05 1.53E+05 1.83E+05
f9 5.57E+04 9.79E+04 1.32E+05 1.53E+05
f10 5.94E+04 1.03E+05 1.33E+05 1.69E+05
f11 5.49E+04 9.41E+04 1.32E+05 1.52E+05

4.5 The influence of the number of migrating individuals
To analyze the effectiveness of the number of migrating individuals on the performance of
SparkPSODE, 5, 10, 15, and 20 migrating individuals are selected for comparison experiments.
For different numbers of migrating individuals, the proposed algorithm was independently
tested 20 times. Table 6 and Table 7 record the averaged optimal values and the averaged
computational time of our proposed algorithm in the cases of four different numbers of
migrating individuals, respectively. It can be seen from Table 6 that with the number of
migrating individuals increasing, the convergence accuracy of functions f4, f6, f10, and f11
improving. The solutions of functions f2, f9, and f10 are optimal when the number of migrating
individuals is 15, and increasing the number of migrating individuals does not improve
solution accuracy. Table 7 shows that the interaction time between migrating individuals
raises following the increase of the number of migrating individuals on ten test functions. In
general, the number of migrating individuals should be appropriately set to achieve a
satisfying performance.

5986 Fan et al.: A Hybrid Mechanism of Particle Swarm Optimization and Differential
Evolution Algorithms based on Spark

Table 6. Experimental results of SparkPSODE with different numbers of migrating individuals

F/M 5(mean±std) 10 (mean±std) 15(mean±std) 20 (mean±std)
f1 2.80E-89±1.22E-88 9.78E-27±4.26E-26 8.87E-62±3.85E-61 1.10E-68±4.78E-68
f2 2.99E-12±1.01E-11 8.47E-13±1.42E-12 2.00E-13±7.97E-13 3.73E-12±1.03E-11
f3 1.92E-43±8.22E-43 3.69E-46±1.61E-45 2.63E-31±1.15E-30 5.90E-28±2.35E-27
f4 2.21E-01±4.13E-01 3.11E-01±4.61E-01 2.84E-01±4.49E-01 0.00E+00±0.00E+00
f5 9.94E+02±4.06E+00 9.94E+02±3.72E+00 9.94E+02±3.49E+00 9.96E+02±3.84E+00
f6 7.02E+01±1.67E+02 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00
f7 4.28E-03±6.22E-03 6.10E-03±8.69E-03 4.17E-03±3.79E-03 3.29E-03±3.87E-03
f8 -2.48E+06±3.27E+05 -2.53E+06±4.36E+05 -2.44E+06±3.48E+05 -2.37E+06±2.90E+05
f9 3.37E+03±4.60E+03 1.89E+03±3.79E+03 1.48E+03±3.52E+03 1.92E+03±3.84E+03
f10 1.41E+01±1.03E+01 1.62E+01±9.37E+00 2.16E+00±6.49E+00 8.66E+00±1.06E+01
f11 3.28E-02±1.43E-01 1.01E-01±2.40E-01 0.00E+00±0.00E+00 0.00E+00±0.00E+00

Table 7. The averaged computational time of SparkPSODE with different numbers of migrating

individuals (ms)
F/M 5 10 15 20

f1 6.39E+04 8.88E+04 1.12E+05 1.45E+05
f2 6.45E+04 9.01E+04 1.13E+05 1.44E+05
f3 1.98E+05 2.16E+05 2.36E+05 2.67E+05
f4 6.28E+04 8.71E+04 1.06E+05 1.28E+05
f5 6.25E+04 8.61E+04 1.07E+05 1.58E+05
f6 6.39E+04 8.60E+04 1.19E+05 1.43E+05
f7 6.34E+04 9.43E+04 1.12E+05 1.43E+05
f8 9.06E+04 1.22E+05 1.54E+05 1.84E+05
f9 7.86E+04 9.32E+04 1.34E+05 1.69E+05
f10 8.05E+04 1.08E+05 1.26E+05 1.43E+05
f11 8.06E+04 1.09E+05 1.34E+05 1.29E+05

5. Conclusion
This paper introduces a hybrid mechanism of PSO and DE algorithms based on Spark for
LSGO problems. The proposed algorithm relies on Spark cloud computing platform and uses
the RDD and island models to realize its parallelization. The proposed algorithm divides the
global population into several subpopulations, and each subpopulation evolves independently.
In order to realize the communication between subpopulations, migrating individuals are
carried out at specific generation intervals. The results demonstrate that our proposal is a fast
algorithm that has high acceleration performance and scalability. Using more nodes to solve
massive or real-world optimization problems, and further improving the performance and the
applicability of the algorithm will be considered in a future study.

Acknowledgment
This research is partially supported by Institute of Information and Telecommunication
Technology of Kunsan National University, South Korea, and the National Natural Science
Foundation of China (No. 61763019, 61662038), and the Science and Technology Plan
Projects of Jiangxi Provincial Education Department, China (No. GJJ180891, GJJ161072).

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5987

References
[1] J. Vesterstrom and R. Thomsen, “A comparative study of differential evolution, particle swarm

optimization, and evolutionary algorithms on numerical benchmark problems,” in Proc. of the
2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), vol. 2, pp. 1980-1987,
September 2004. Article (CrossRef Link)

[2] M. Črepinšek, S.H. Liu, and M. Mernik, “Exploration and exploitation in evolutionary algorithms:
A survey,” ACM Computing Surveys (CSUR), vol. 45, no. 3, pp. 35, June 2013.
Article (CrossRef Link)

[3] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. of ICNN'95- International
Conference on Neural Networks, pp. 1942-1948, August 2002. Article (CrossRef Link)

[4] M. Meissner, M. Schmuker, and G. Schneider, “Optimized Particle Swarm Optimization (OPSO)
and its application to artificial neural network training,” BMC Bioinformatics, vol. 7, no.1, pp. 125,
March 2006. Article (CrossRef Link)

[5] H. Liu, Z. Cai, and Y. Wang, “Hybridizing particle swarm optimization with differential evolution
for constrained numerical and engineering optimization,” Applied Soft Computing, vol. 10, no. 2,
pp. 629-640, March 2010. Article (CrossRef Link)

[6] T. Zhang and X. Gao, “Hybridizing particle swarm optimization with differential evolution solving
constrained problems,” Microcomputer & Its Applications, vol. 33, no. 17, pp. 83-87, September
2014. Article (CrossRef Link)

[7] W.J. Zhang and X.F. Xie, “DEPSO: hybrid particle swarm with differential evolution operator,” in
Proc. of 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference
Theme-System Security and Assurance (Cat. No. 03CH37483), vol. 4, pp. 3816-3821, November
2003. Article (CrossRef Link)

[8] S. Das, A. Abraham, and A. Konar, “Particle Swarm Optimization and Differential Evolution
Algorithms: Technical Analysis, Applications and Hybridization Perspectives,” Advances of
computational intelligence in industrial systems, Springer, Berlin, Heidelberg, pp. 1-38, 2008.
Article (CrossRef Link)

[9] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster computing
with working sets,” in Proc. of the 2nd USENIX conference on Hot topics in cloud computing, pp.
10-10, June 2010. Article (CrossRef Link)

[10] A.W. McNabb, C.K. Monson, and K.D. Seppi, “Parallel PSO using MapReduce,” in Proc. of 2007
IEEE Congress on Evolutionary Computation, pp. 7-14, January 2008.
Article (CrossRef Link)

[11] I. Aljarah and S.A. Ludwig, “Parallel particle swarm optimization clustering algorithm based on
MapReduce methodology,” in Proc. of 2012 Fourth World Congress on Nature and Biologically
Inspired Computing (NaBIC), pp. 104-111, January 2013. Article (CrossRef Link)

[12] Y. Wang, Y. Li, Z. Chen, and Y. Xue, “Cooperative particle swarm optimization using
MapReduce,” Soft Computing, vol. 21, no. 22, pp. 6593-6603, November 2017.
Article (CrossRef Link)

[13] G.S. Sadasivam and D. Selvaraj, “A novel parallel hybrid PSO-GA using MapReduce to schedule
jobs in Hadoop data grids,” in Proc. of 2010 Second World Congress on Nature and Biologically
Inspired Computing (NaBIC), pp. 377-382, February 2011. Article (CrossRef Link)

[14] J. Cao, H. Cui, H. Shi, and L. Jiao, “Big Data: A Parallel Particle Swarm
Optimization-Back-Propagation Neural Network Algorithm Based on MapReduce,” PloS one, vol.
11, no. 6, pp. 1-17, June 2016. Article (CrossRef Link)

[15] A. Sinha and P.K. Jana, “A hybrid MapReduce-based k-means clustering using the genetic
algorithm for distributed datasets,” The Journal of Supercomputing, vol. 74, no. 4, pp. 1562-1579,
April 2018. Article (CrossRef Link)

[16] N. Al-Madi, I. Aljarah, and S.A. Ludwig, “Parallel glowworm swarm optimization clustering
algorithm based on MapReduce,” in Proc. of 2014 IEEE Symposium on Swarm Intelligence, pp.
1-8, January 2015. Article (CrossRef Link)

https://doi.org/10.1109/CEC.2004.1331139
https://doi.org/10.1145/2480741.2480752
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1186/1471-2105-7-125
https://doi.org/10.1016/j.asoc.2009.08.031
https://doi.org/10.19358/j.issn.1674-7720.2014.17.026
https://doi.org/10.1109/ICSMC.2003.1244483
https://doi.org/10.1007/978-3-540-78297-1_1
https://dl.acm.org/citation.cfm?id=1863103.1863113
https://doi.org/10.1109/CEC.2007.4424448
https://doi.org/10.1109/NaBIC.2012.6402247
https://doi.org/10.1007/s00500-016-2390-9
https://doi.org/10.1109/NABIC.2010.5716346
https://doi.org/10.1371/journal.pone.0157551
https://doi.org/10.1007/s11227-017-2182-8
https://doi.org/10.1109/SIS.2014.7011794

5988 Fan et al.: A Hybrid Mechanism of Particle Swarm Optimization and Differential
Evolution Algorithms based on Spark

[17] S. Yuan, C. Deng, X. Dong, D. Fan, and C. Yin, “Cloud differential evolution algorithm with
multi-strategy for high dimensional optimization problems,” Computer Engineering and Design,
vol. 39, no. 9, pp. 2792-2799, September 2018. Article (CrossRef Link)

[18] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, et al., “Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster computing,” in Proc. of the 9th USENIX
conference on Networked Systems Design and Implementation, pp. 2-2, April 2012.
Article (CrossRef Link)

[19] C. Deng, X. Tan, X. Dong, and Y. Tan, “A Parallel Version of Differential Evolution Based on
Resilient Distributed Datasets Model,” in Proc. of Bio-Inspired Computing-Theories and
Applications, Springer, Berlin, Heidelberg, pp. 84-93, December 2015.
Article (CrossRef Link)

[20] D. Teijeiro, X.C. Pardo, P. González, J.R. Banga, and R. Doallo, “Implementing parallel
differential evolution on Spark,” in Proc. of European Conference on the Applications of
Evolutionary Computation, pp. 75-90, Springer, Cham, April 2016. Article (CrossRef Link)

[21] H. Peng, X. Tan, C. Deng, and S. Peng, “SparkCUDE: a spark-based differential evolution for
large-scale global optimisation,” international Journal of High Performance Systems Architecture,
vol. 7, no. 4, pp. 211-222, June 2018. Article (CrossRef Link)

[22] L. Cheng, Z. Wu, H. Peng, S. Wu, C. Deng et al., “Distributed Particle Swarm Optimization
Algorithm Based on Resilient Distributed Datasets,” Journal of Chinese Computer Systems, vol.
37, no. 11, pp. 2542-2546, November 2016.

[23] J. Kennedy, “Particle swarm optimization,” Encyclopedia of Machine Learning, Springer, Boston,
MA, pp. 760-766, 2011. Article (CrossRef Link)

[24] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in Proc. of IEEE World Congress
on Computational Intelligence (Cat. No.98TH8360), pp. 69-73, August 2002.
Article (CrossRef Link)

[25] S. Das and P.N. Suganthan, “Differential evolution: A survey of the state-of-the-art,” IEEE
transactions on evolutionary computation, vol. 15, no. 1, pp. 4-31, February 2011.
Article (CrossRef Link)

[26] R. Jin, G. Chen, A.K.H. Tung, L. Shou, and B.C. Ooi, “An Optimized Iterative Semantic
Compression Algorithm And Parallel Processing for Large Scale Data,” KSII Transactions on
Internet & Information Systems, vol. 12, no. 6, pp. 2761-2781, June 2018. Article (CrossRef Link)

[27] Y.J. Gong, W.N. Chen, Z.H. Zhan, J. Zhang, Y. Li et al., “Distributed evolutionary algorithms and
their models: A survey of the state-of-the-art,” Applied Soft Computing, vol. 34, pp. 286-300,
September 2015. Article (CrossRef Link)

[28] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Transactions On
Evolutionary Computation, vol. 3, no. 2, pp. 82-102, July 1999. Article (CrossRef Link)

[29] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization using cooperative
coevolution,” information Sciences, vol. 178, no. 15, pp. 2985-2999, August 2008.
Article (CrossRef Link)

[30] X. Tan, C. Deng, Z. Wu, H. Peng, and Q. Zhu, “Cooperative differential evolution in cloud
computing for solving large-scale optimization problems,” CAAI Transactions On Intelligent
Systems, vol. 13, no. 2, pp. 243-253, April 2018. Article (CrossRef Link)

https://doi.org/10.16208/j.issn1000-7024.2018.09.017
https://dl.acm.org/citation.cfm?id=2228301
https://doi.org/10.1007/978-3-662-49014-3_8
https://doi.org/10.1007/978-3-319-31153-1_6
https://doi.org/10.1504/IJHPSA.2017.092390
https://doi.org/10.1504/IJHPSA.2017.092390
https://doi.org/10.1007/978-0-387-30164-8_630
https://doi.org/10.1109/ICEC.1998.699146
https://doi.org/10.1109/TEVC.2010.2059031
https://doi.org/10.3837/tiis.2018.06.018
https://doi.org/10.1016/j.asoc.2015.04.061
https://doi.org/10.1109/4235.771163
https://doi.org/10.1016/j.ins.2008.02.017
https://doi.org/10.11992/tis.201706053

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019 5989

Debin Fan is currently pursuing his Ph.D. degree in the Department of Information and
Communication Engineering, Kunsan National University, Kunsan, South Korea, and
received the M.Eng. in Computer technology from Huazhong University of Science and
Technology, Wuhan, China. He has been an associate professor in the School of
Information Science and Technology, Jiujiang University, since 2013. His research
interests include cloud computing, evolutionary computation, swarm intelligence, and
large-scale optimization.

Jaewan Lee received his B.S., M.S., and Ph.D. degrees in Computer Engineering from
Chung-Ang University in 1984, 1987, and 1992, respectively. Currently, he is a professor at
the Department of Information and Communication Engineering, Kunsan National
University, Kunsan, South Korea. His research interests include distributed systems, cloud
computing, data mining, and computer networks.

