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Abstract 
 
With the onset of the big data age, data is growing exponentially, and the issue of how to 
optimize large-scale data processing is especially significant. Large-scale global optimization 
(LSGO) is a research topic with great interest in academia and industry. Spark is a popular 
cloud computing framework that can cluster large-scale data, and it can effectively support the 
functions of iterative calculation through resilient distributed datasets (RDD). In this paper, we 
propose a hybrid mechanism of particle swarm optimization (PSO) and differential evolution 
(DE) algorithms based on Spark (SparkPSODE). The SparkPSODE algorithm is a parallel 
algorithm, in which the RDD and island models are employed. The island model is used to 
divide the global population into several subpopulations, which are applied to reduce the 
computational time by corresponding to RDD’s partitions. To preserve population diversity 
and avoid premature convergence, the evolutionary strategy of DE is integrated into 
SparkPSODE. Finally, SparkPSODE is conducted on a set of benchmark problems on LSGO 
and show that, in comparison with several algorithms, the proposed SparkPSODE algorithm 
obtains better optimization performance through experimental results. 
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1. Introduction 

With the fast development of technology and society, large volumes of data are generated in 
many real-world applications, such as deep neural network optimization, large-scale cluster 
resource scheduling, and urban intelligent transportation systems. And so many optimization 
problems become more and more complicated. Large-scale global optimization (LSGO) 
problems attract much attention from the researchers in academia and industrial fields. 

Recently, evolutionary algorithms (EAs), such as the genetic algorithm (GA), differential 
evolution (DE), and particle swarm optimization (PSO), have been successfully applied in 
many fields due to their versatility, reliability, and stability [1][2]. The PSO algorithm, 
proposed in [3], is a stochastic search algorithm for simulating the foraging behavior of birds. 
PSO is simple since fewer parameters need to be adjusted. As a result, it is extensively used in 
function optimization, pattern recognition, and other practical application fields of EAs, and 
significant results were achieved [4]. The premature convergence problem might easily occur 
in the PSO algorithm because of its singularity, adversely affecting the performance of the 
algorithm. Therefore, a hybrid algorithm that utilizes the global search ability of other 
algorithms is widely used to overcome the shortcomings of PSO [5][6]. Zhang et al. [7] 
presented a hybrid PSO with DE operator algorithm, which can provide the hell-shaped 
mutations while preserving the particle swarm dynamics. Das et al. [8] explored several 
schemes to control the convergence behaviors of PSO and DE by selecting the parameters 
reasonably. The above-stated studies perform well in solving low-dimensional problems; 
however, those studies might reduce the precision of the solution and deteriorate the efficiency 
when facing LSGO problems. 
    The cloud computing framework is one of the most feasible and reliable ways to solve 
LSGO problems, as it parallels a huge amount of computing to achieve better operational 
efficiency and scalability. Two popular cloud computing frameworks are Hadoop MapReduce 
and Apache Spark [9]. McNabb et al. [10] demonstrated that PSO could be naturally adapted 
to the MapReduce programming model. For large data sets, Aljarah et al. [11] introduced a 
parallel version of PSO that is in MapReduce-based to get over the inefficiency of PSO 
clustering. Wang et al. [12] presented a cooperative PSO algorithm using the MapReduce 
model, which has better performance and a significant advantage in terms of time. There are 
also some other EAs based on MapReduce [13]-[17]. However, MapReduce is a general batch 
processing computing model, which needs to read and write files frequently and lacks an 
effective mechanism of parallel computing. Spark has a new resilient distributed datasets 
(RDD) model [18]. RDD is based on memory calculation, which can effectively support 
iterative calculation. Deng et al. [19] proposed a parallel DE based on RDD, which can 
decrease the computational time of the objective function. Teijeiro et al. [20] presented two 
different parallel schemes based on Spark for DE algorithm. For LSGO problems, Peng et al. 
[21] designed a Spark-based DE with commensal learning and uniform local search. Cheng et 
al. [22] presented a distributed RDD-based PSO algorithm, which has high precision and 
acceleration. RDD greatly speeds up program processing, allowing Spark to be used in a 
variety of large-scale processing scenarios. 

In this paper, we introduce a hybrid mechanism of PSO and DE algorithms based on Spark 
(SparkPSODE) for LSGO problems. The proposed SparkPSODE begins with PSO. Then 
SparkPSODE uses the evolution strategy of the DE algorithm to enhance population diversity 
and avoid the local convergence. SparkPSODE realizes its parallelization using the RDD and 
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island models for improving the convergence speed. Finally, by testing the benchmark 
functions on LSGO, in comparison with the other algorithms, experiments prove the 
effectiveness of SparkPSODE. Our proposal is applicable for large-scale data clustering, and 
also offers a novel solution to solve optimization problems with big data. 

The remaining of this article is structured as follows. We introduce the classical PSO and 
DE in Section 2. Section 3 shows the details of our proposed SparkPSODE algorithm. 
Numerical experimental tests are presented in Section 4. Finally, we conclude the paper in the 
last section. 

2. The classical PSO and DE algorithms 

2.1 Particle swarm optimization 
In PSO [23], each bird is one particle that denotes one point in the D-dimensional search space. 
The population consists of n particles, each of which has one current position and velocity, 
shown in Eqs. (1) and (2). 

1, 2,[ ..., ]i i i idX x x x=                                                           (1) 

    1, 2,[ ..., ]i i i idV v v v=                                                            (2) 

where i =1,2,..., N. Each particle flies in search space, and the optimal solution is found by 
iterations. 

1, 2,[ ..., ]i i i idP p p p=                                                          (3) 

1, 2,[ ..., ]g g g gdP p p p=                                                       (4) 
Eq. (3) represents the position of the personal best of particle, and Eq. (4) denotes the position 
of the global best particle. 

During each iteration, the position x and velocity v of the particle is updated using Eqs. (5) 
and (6), respectively. 

 
1 1 2 2( 1) ( ) ( ( ) ( )) ( ( ))id id id id gd idv k v k c r p k x k c r p x kω+ = ⋅ + ⋅ ⋅ − + ⋅ ⋅ −                        (5) 

( 1) ( ) ( 1)id id idx k x k v k+ = + +                                                  (6) 

where k denotes the number of iterations, r1 and r2 are random values in the interval [0,1], 
which can make groups be diversity. c1 and c2 denote two acceleration factors, in which the 
particles have the ability to self-summarize and learn the excellent individual in the group, 
thus approaching the particle's optimal solution and the group global optimal solution. In the 
iterative process, adjusting these two parameters properly can reduce the disturbance of the 
local convergence and speed up the convergence. ω  is the inertia factor that influences the 
exploration and development abilities of the particle. In the standard PSO algorithm, ω  uses 
the same value, resulting in particle diversity is greatly reduced. In this article, the inertia 
factor of the linear decrement weight strategy [24] is used to improve particle diversity. 

2.2 Differential evolution 
DE [25] is a type of swarm intelligent algorithm that adopts the real coding method. In DE, the 
mutation operation uses the mutation strategy; an individual is disturbed by the mutant vector 
between the individuals in the population, and individual mutation is realized. Crossover can 
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be considered as a supplement to mutation. Moreover, the selection strategy is usually a 
tournament choice rule. 

The main steps of DE are as follows. 
 
Step 1. Population initialization. 
DE organizes a population of NP individuals in the D-dimensional search space, and then 

individuals are initialized by Eq. (7). 
, , , ,(0) (0,1) ( )L U L

i j i j i j i jx x rand x x= + ⋅ −                                             (7) 

where i = 1,2,…, NP, j = 1,2,…, D, ,
U
i jx  and ,

L
i jx  are the upper and lower constraints, and 

(0,1)rand ∈  represents a random number uniformly distributed among the numbers [0,1]. 
 

Step 2. Mutation. 
DE usually achieves individual mutation through the mutant vector between individuals in 

the population. The common mutation strategy randomly selects two different individuals, and 
then the mutant vector is scaled, and the vector is synthesized, as shown in Eq. (8). 

1 2 3
( 1) ( ) ( ( ) ( ))i r r rv g x g F x g x g+ = + ⋅ −                                           (8) 

where F is the scaling factor lying between 0 and 1, and r1, r2, r3, and i are random numbers 
uniformly distributed among the numbers [1, NP] and 1 2 3r r r i≠ ≠ ≠ . 
 

Step 3. Crossover. 
After completing the previous step, the DE algorithm crosses the population { ( )}ix g , and its 

mutation intermediates { ( 1)}iv g +  by the crossover probability, as shown in Eq. (9). 
,

,
,

( 1),    (0,1)    
( 1)

( ),                                 
i j rand

i j
i j

v g if rand CR or j j
u g

x g otherwise
+ ≤ =+ = 


                                   (9) 

where randj  is a randomly generated integer among the numbers [1, D], and [ ]0,1CR∈  is the 
crossover probability. 
 

Step 4. Selection. 
DE mainly utilizes the greedy strategy to choose a better solution for the next generation. 

     
( 1),   ( ( 1)) ( ( ))

( 1)
( ),                                 
i i i

i
i

u g if f u g f x g
x g

x g otherwise
+ + ≤

+ = 


                               (10) 

 
Step 5. Termination. 
By performing the above operations, the DE algorithm stops searching and outputs the 

optimal value when the cycle algebra exceeds the maximum evolutionary algebra or when 
solution precision is required. 

3. Proposed hybrid mechanism of PSO and DE algorithms based on 
Spark 

3.1 The Spark Cloud Platform 
Apache Spark is an efficient and stretchable clustering computing system, which inherits 
MapReduce’s linear scalability and fault tolerance on the Hadoop platform. However, Spark 
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extends the MapReduce model in many ways and utilizes the RDD model for computing 
large-scale data in parallel [26]. 

The RDD model is the core component of Spark. In essence, RDD is the element set of a 
distributed cluster, which runs on different nodes of a cluster. In Spark, all the data operations 
are used to create RDD, transform existing RDD, and invoke RDD operations. Each RDD 
corresponds to one partition. 

Users can create RDD in two ways: one is to read an external dataset, and the other is to 
generate RDD in-memory calculations by functions, such as join and map. After RDD is 
created, two kinds of operations can be performed: transformations and actions. 
Transformation operations mainly include such as map, filter, flatMap. Action operations 
mainly include such as count, collect, reduce, save. Transformation operations generate a new 
RDD from an existing one. Action operations compute a result for the RDD, and the result is 
returned to the driver program or stored in Hadoop Distributed File System (HDFS). 

The difference between transformation operations and action operations is the method of 
calculating RDD on Spark. In addition to transformation and action operations, RDD can also 
be operated upon using the cache operation. The implementation mechanism of the RDD 
model is based on the iterator, which makes data access more efficient. The RDD computing 
model in Spark is shown in Fig. 1. 

 
 

Partition 1

Partition 2

Partition N

RDD

Compute

RDD

Compute

Compute Compute

Compute Compute

  
 

Fig. 1. RDD computing model 
 

3.2 Island Model 
In this paper, an island model [27] is utilized to realize the parallelization of the algorithm. The 
island model is coarse-grained and shown in Fig. 2. In the parallelization process, the 
population is divided into serval subpopulations, then each of which is evolved independently 
in the iteration cycle. The implementation of the island model is mainly based on five 
parameters as follows: 

• The number of islands is the number of subpopulations. This value affects the 
algorithm’s parallel efficiency and population diversity, so it should not be either too 
high or too low.  

• The migration topology refers to the logical model of individual migration. Common 
migration topologies are ring, chain, and cascading topologies. In the SparkPSODE 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 12, December 2019                             5977 

algorithm, a ring+1+2 topology is utilized, in which each island is only connected 
with two adjacent islands. 

• The migration strategy is the strategy of replacing individuals in target subpopulation 
with that from source subpopulation. A common strategy is replacing the worst 
individuals in target subpopulation with the best individuals from source 
subpopulation, which is termed "best-worst" strategy. Another possible strategy is 
"best+random-worst", where the worst individuals in target subpopulation are 
replaced with the best and random individuals from source subpopulation. A random 
replacement strategy is a "random-random" strategy. 

• The number of migration individuals determines the degree of communication 
between the subpopulations, and should not to be too large or too small.  

• The migration frequency is the algebra of migration interval. If it is too high, the 
solution might fall into local optimal solution; if it is too low, the information might 
not be fully shared among the subpopulations. 

 

 
Fig. 2. Island Model 

 

3.3 The proposed SparkPSODE algorithm 
The SparkPSODE algorithm employs DE’s evolution strategy in the framework of PSO, 
which is parallel and implemented based on Spark. Concretely, we firstly utilize DE/rand/1 
mutation operator of DE. Subsequently, we apply the RDD and island models to realize the 
parallel computing of SparkPSODE. 

The details of our proposal can be presented as follows: 
1) Dividing the global population into independent subpopulations by using parallelize in 

Spark, and each subpopulation corresponds to a partition of the RDD model. 
2) Calculating each particle’s fitness value, and then comparing and updating the position of 

the personal best of particle and the position of the global best particle. 
3) Using Eqs. (5) and (6) to change each particle’s position and velocity. 
4) Using Eqs. (8), (9) and (10) to implement three operations of the DE algorithm toward the 

updated position of each particle. 
5) Repeat step 2 until the termination condition is satisfied.  
6) Using collect to combine each partition for generating a new population and finding the 

global optimum by reduce. 
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    Algorithm 1 demonstrates the pseudocode of SparkPSODE. The flowchart of SparkPSODE 
is given in Fig. 3. For clarity, the method of data storage utilized in Fig. 3 is described below: 
the data is stored in key-value pairs, namely [keyi , valuei], where i = 1,2,..., m, m represents the 
population number, keyi is an integer that is the index of the subpopulation of i, and valuei is a 
list containing all the individuals in the subpopulation. 
 

 
Algorithm 1. The pseudocode of SparkPSODE 
Input:  

NP: the number of population;  
popsize: the size of subpopulation; 
pbest: the best position of particle; 
gbest: the optimal location of population; 
migrationInterval:  the migration frequency; 
related parameters. 

Output:  
The global optimum. 
 

1:  Initialize the parameters: NP, popsize and t=0; 
2:  Randomly initialize the population; 
3:  Calculate each particle’s fitness function f (xi); 
4:  Map the subpopulations to RDD partitions (islands); 
5:  while termination criterion is not met do 
6:      while t < migrationInterval do 
7:          for i=1 to popsize do 
8:              if (f (xi) < f (pbesti)) then 
9:                  pbesti = xi; 
10:            end if 
11:            if (f (xi) < f (gbest)) then 
12:                gbest = xi; 
13:            end if 
14:            Change the velocity and position of each particle by Eqs. (5) and (6); 
15:            Update the position of each particle by Eqs. (8) , (9) and (10); 
16:            Evaluate each particle’s fitness function f (xi); 
17:        end for 
18:        t++; 
19:    end while 
20:    Migrate individuals; 
21:    Collect the subpopulations. 
22:end while 
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Fig. 3. The flowchart of SparkPSODE 
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4. Numerical experiments 

4.1 Benchmark problems 
Aiming to testify the optimization capability of SparkPSODE in solving LSGO problems, 
eleven widely used benchmark problems [28] with size up to 1000 dimensions were selected 
for analysis. The descriptions of these problems are presented in Table 1.  

 
Table 1. Benchmark problems 

Name Expression Value range Optimum 

Sphere Model 1
2

( ) 1
Df x xi i∑= =  [-100,100] 0 

Schwefel’s 
Problem 2.22 2 ( ) 1 1

D
if x i

D xiix∑= = ∏+ =  
[-10,10] 0 

Schwefel’s 
Problem 1.2 3

2
( ) ( )1 1

D if x xi j j∑ ∑= = =  
[-100,100] 0 

Schwefel’s 
Problem 2.21 4 ( ) max { ,1 }f x x i Dii= ≤ ≤

 
[-100,100] 0 

Generalized 
Rosenbrock’s 

Function 
5

2 2 21( ) (100( ) ( 1) )11
Df x x x xi i ii
−∑= − + −+=  

[-30,30] 0 

Step Function 6
2

( ) ( 0.5 )1
Df x xi i∑= +=  

[-100,100] 0 

Quartic with 
Noise 7

4
( ) [0,1)1

Df x ix randomi i∑= +=  
[-1.28,1.28] 0 

Generalized 
Schwefel’s 

Problem 2.26 
8 ( ) sin( )1

Df x x xii i∑= −=  
[-500,500] -418.9829*D 

Generalized 
Rastrigin’s 
Function 

9
2

( ) ( 10 cos(2 ) 10)1
Df x x xi i iπ∑= − +=  

[-5.12,5.12] 0 

Ackley’s 
Function 

10
1 2( ) 20 exp( 0.2 )1

1
exp( cos 2 ) 201

f x xii

x eii

D
D

D
D

π

= − − ∑ =

∑− + +=
 

[-32,32] 0 

Generalized 
Griewank 
Function 

11
1 2

( ) cos( ) 11 14000
D xif x xi ii i

D∑ ∏= − += =
 

[-600,600] 0 

4.2 Experimental settings 
In this study, we conducted the experiments on two PCs: one PC is with Intel Core i7-8700 
3.20 GHz CPUs and 16 GB memory, and the other PC is with Intel Core i3-2120 3.30 GHz 
CPUs and 4 GB memory. The operating systems of the two PCs are Ubuntu 16.04. Hadoop 
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2.2.0 and Spark 2.3.3 were installed in the two PCs. The proposed algorithm is implemented 
by Scala and Java languages in IntelliJ IDEA 14.1.2. The main parameters and settings for 
SparkPSODE are described in Table 2.  

 
Table 2. The parameters of SparkPSODE 

Parameters Definitions Value 
NP The number of the population 100 
D The size of the dimension 1000 

Max_FEs The maximum number of fitness 
evaluations 5,000,000 

PSO 
c1 Acceleration factor 2 
c2 Acceleration factor 2 
ω  Inertia weight 0.4-0.9 

DE F The scaling factor 0.5 
CR The crossover probability 0.9 

islands The number of islands 4 
topology The migration topology ring+1+2 

migrationIndividuals The number of migration individuals 15 
migrationStrategy The migration strategy best-worst 
migrationInterval The migration frequency 1000 

 

4.3 Experimental results and analysis 
Table 3 lists the statistical results of PSO, DECCG [29], SparkDECC [30], and SparkPSODE. 
For a fair comparison, Max_FEs is set to 5,000,000, and all algorithms independently run 25 
times for each benchmark problem. We analyze the experimental results by Wilcoxon's 
rank-sum test. In Table 3, "-", "+", and "≈" represent the statistical results of the compared 
algorithms being worse than, better than, and similar to that of SparkPSODE, respectively. 

 
Table 3. Experimental results of PSO, DECCG, SparkDECC, and SparkPSODE 

Fun PSO 
(mean±std) 

DECCG 
(mean±std) 

SparkDECC 
(mean±std) 

SparkPSODE 
(mean±std) 

1f  2.30E+06±2.79E+04 － 9.61E-29±3.11E-29 － 5.85E-13±1.62E-13 － 7.36E-65 ± 3.60E-64 

2f  7.16E+04±3.30E+04 － 1.70E-14±1.77E-14 － 6.60E-07±1.00E-07 － 2.59E-35 ± 1.18E-34 

3f  8.68E+08±6.51E+07 － 1.20E-03±6.70-04 － 5.31E+07±7.20E+06 － 8.02E-53 ± 3.93E-52 

4f  4.01E+02±7.98E+00 － 3.19E-02±4.72E-03 － 9.76E+01±2.22E-01 － 0.00E+00±0.00E+00 

5f  9.23E+12±1.29E+12 － 9.86E+02±4.11E-01 ＋ 1.62E+03±1.62E+02 － 9.93E+02 ± 3.38E+00 

6f  2.30E+06±1.29E+05 － 0.00E+00±0.00E+00 ≈ 1.60E-01±4.73E-01 － 0.00E+00±0.00E+00 

7f  3.48E+13±3.87E+12 － 2.62E-03±6.68E-04 ＋ 3.62E+00±1.67E-01 － 7.90E-03 ± 6.65E-03 

8f  -1.34E+05±4.51E+03 － -4.19E+05±9.28E-11 ＋ -6.11E+04±1.18E+03 － -2.47E+06 ±3.48E+05 

9f  2.33E+06±1.35E+05 － 1.25E-14±7.49E-15 ＋ 1.10E+04±3.93E+01 － 1.56E+03±3.57E+03 

10f  2.15E+01±3.77E-02 － 1.27E-13±7.11E-15 ＋ 4.55E-08±8.16E-09 ＋ 8.65E+00±1.06E+01 

11f  5.75E+02±4.15E+01 － 9.50E-16±1.44E-16 － 3.54E-14±1.03E-14 － 0.00E+00±0.00E+00 
-/+/≈ 11/0/0 5/5/1 10/1/0  
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From Table 3, it can be observed that SparkPSODE consistently performs better than PSO 
in all eleven benchmark functions. SparkPSODE is better than DECCG in functions f1,  f2,  f3,  f4, 
and f11. Especially, in functions f4, f6, and f11, SparkPSODE can even converge to 0. The 
proposed SparkPSODE algorithm is superior to SparkDECC in ten benchmark functions. The 
above analysis indicates that the SparkPSODE algorithm is effective. 

 

        
Fig. 4. Convergence figure of f1 

 

 
Fig. 5. Convergence figure of f3 
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Fig. 6. Convergence figure of f4 

 
 

 
Fig. 7. Convergence figure of f7 
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Fig. 8. Convergence figure of f10 

 
 

Fig. 4 to Fig. 8 show the convergence process of four algorithms on functions f1, f3, f4, f7, and 
f10, respectively. For f1, f3, and f4, SparkPSODE can obtain better convergence speed than other 
algorithms. 

Above all, we observe that the proposed SparkPSODE algorithm outperforms in terms of 
solution accuracy and convergence speed as compared to the other algorithms. 
 

4.4 The influence of the number of subpopulations 
To analyze the effectiveness of the number of subpopulations on the performance of 
SparkPSODE, different numbers of subpopulations, such as 1, 2, 4, and 5, were selected for 
comparison experiments. In different subpopulations, the proposed algorithm was 
independently tested 20 times. Table 4 and Table 5 record the averaged optimal values and 
the averaged computational time of four different subpopulations, respectively. The results of 
Table 4 show that the convergence accuracy of functions f1,  f2,  f3,  f5, f6,  f7,   f9, and f11 improves 
following the increase of subpopulation number, while the convergence accuracy of functions 
f4, f8, and f10 are not enhanced. According to Table 5, we can see that the interaction time 
between the subpopulations raises following the increase of subpopulation numbers on all the 
eleven test functions. Overall, the appropriate number of subpopulations should be set for 
achieving satisfying performance in the two aspects of time and accuracy. 
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Table 4. Experimental results of SparkPSODE with different numbers of subpopulations 

F/S 1 (mean±std) 2(mean±std) 4 (mean±std) 5(mean±std) 
f1 7.78E+01±1.34E+02 3.23E+01 ± 9.41E+01 9.20E-65±4.01E-64 2.18E-44±9.51E-44 
f2 3.91E+00± 6.57E+00 1.48E-04 ± 5.45E-04 6.20E-12±1.63E-11 6.77E-17±1.42E-16 
f3 8.09E+00± 2.45E+01 2.03E-07 ± 8.82E-07 8.10E-29±3.53E-28 1.20E-52±5.22E-52 
f4 2.70E-01±4.25E-01 1.50E-01±3.55E-01 3.82E-01±4.84E-01 1.24E-01±3.29E-01 
f5 7.13E+03±8.31E+03 7.18E+03±8.44E+03 9.93E+02±3.28E+00 2.76E+03±5.29E+03 
f6 6.89E+01±1.64E+02 4.62E+01±1.38E+02 2.24E+01±9.76E+01 0.00E+00±0.00E+00 
f7 1.80E+04±3.59E+04 1.34E+04±3.20E+04 4.55E-03±1.01E-02 5.74E-03±8.96E-03 
f8 -2.67E+06±3.56E+05 -2.47E+06±4.09E+05 -2.41E+06±4.17E+05 -2.38E+06±2.17E+05 
f9 1.22E+03±2.95E+03 2.85E+03±4.36E+03 4.90E+02±2.14E+03 4.55E+02±1.99E+03 
f10 1.52E+01±9.92E+00 1.95E+01±6.49E+00 1.41E+01±1.03E+01 1.84E+01±7.73E+00 
f11 1.34E-01±2.63E-01 1.02E-01±2.43E-01 1.67E-01±2.90E-01 0.00E+00±0.00E+00 

 
Table 5. The averaged computational time of SparkPSODE with different numbers of subpopulations 

(ms) 
F/S 1 2 4 5 
f1 3.68E+04 6.81E+04 1.12E+05 1.36E+05 
f2 2.85E+04 7.32E+04 1.21E+05 1.41E+05 
f3 1.88E+05 2.09E+05 2.47E+05 2.69E+05 
f4 4.13E+04 7.34E+04 1.14E+05 1.26E+05 
f5 4.27E+04 8.10E+04 1.18E+05 1.29E+05 
f6 4.20E+04 7.63E+04 1.23E+05 1.26E+05 
f7 3.38E+04 8.03E+04 1.04E+05 1.43E+05 
f8 5.67E+04 1.06E+05 1.53E+05 1.83E+05 
f9 5.57E+04 9.79E+04 1.32E+05 1.53E+05 
f10 5.94E+04 1.03E+05 1.33E+05 1.69E+05 
f11 5.49E+04 9.41E+04 1.32E+05 1.52E+05 

 

4.5 The influence of the number of migrating individuals 
To analyze the effectiveness of the number of migrating individuals on the performance of 
SparkPSODE, 5, 10, 15, and 20 migrating individuals are selected for comparison experiments. 
For different numbers of migrating individuals, the proposed algorithm was independently 
tested 20 times. Table 6 and Table 7 record the averaged optimal values and the averaged 
computational time of our proposed algorithm in the cases of four different numbers of 
migrating individuals, respectively. It can be seen from Table 6 that with the number of 
migrating individuals increasing, the convergence accuracy of functions f4,  f6,  f10, and f11 
improving. The solutions of functions f2, f9, and f10 are optimal when the number of migrating 
individuals is 15, and increasing the number of migrating individuals does not improve 
solution accuracy. Table 7 shows that the interaction time between migrating individuals 
raises following the increase of the number of migrating individuals on ten test functions. In 
general, the number of migrating individuals should be appropriately set to achieve a 
satisfying performance. 
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Table 6. Experimental results of SparkPSODE with different numbers of migrating individuals 

F/M 5(mean±std) 10 (mean±std) 15(mean±std) 20 (mean±std) 
f1 2.80E-89±1.22E-88 9.78E-27±4.26E-26 8.87E-62±3.85E-61 1.10E-68±4.78E-68 
f2 2.99E-12±1.01E-11 8.47E-13±1.42E-12 2.00E-13±7.97E-13 3.73E-12±1.03E-11 
f3 1.92E-43±8.22E-43 3.69E-46±1.61E-45 2.63E-31±1.15E-30 5.90E-28±2.35E-27 
f4 2.21E-01±4.13E-01 3.11E-01±4.61E-01 2.84E-01±4.49E-01 0.00E+00±0.00E+00 
f5 9.94E+02±4.06E+00 9.94E+02±3.72E+00 9.94E+02±3.49E+00 9.96E+02±3.84E+00 
f6 7.02E+01±1.67E+02 0.00E+00±0.00E+00 0.00E+00±0.00E+00 0.00E+00±0.00E+00 
f7 4.28E-03±6.22E-03 6.10E-03±8.69E-03 4.17E-03±3.79E-03 3.29E-03±3.87E-03 
f8 -2.48E+06±3.27E+05 -2.53E+06±4.36E+05 -2.44E+06±3.48E+05 -2.37E+06±2.90E+05 
f9 3.37E+03±4.60E+03 1.89E+03±3.79E+03 1.48E+03±3.52E+03 1.92E+03±3.84E+03 
f10 1.41E+01±1.03E+01 1.62E+01±9.37E+00 2.16E+00±6.49E+00 8.66E+00±1.06E+01 
f11 3.28E-02±1.43E-01 1.01E-01±2.40E-01 0.00E+00±0.00E+00 0.00E+00±0.00E+00 

 
Table 7. The averaged computational time of SparkPSODE with different numbers of migrating 

individuals (ms) 
F/M 5 10 15 20 

f1 6.39E+04 8.88E+04 1.12E+05 1.45E+05 
f2 6.45E+04 9.01E+04 1.13E+05 1.44E+05 
f3 1.98E+05 2.16E+05 2.36E+05 2.67E+05 
f4 6.28E+04 8.71E+04 1.06E+05 1.28E+05 
f5 6.25E+04 8.61E+04 1.07E+05 1.58E+05 
f6 6.39E+04 8.60E+04 1.19E+05 1.43E+05 
f7 6.34E+04 9.43E+04 1.12E+05 1.43E+05 
f8 9.06E+04 1.22E+05 1.54E+05 1.84E+05 
f9 7.86E+04 9.32E+04 1.34E+05 1.69E+05 
f10 8.05E+04 1.08E+05 1.26E+05 1.43E+05 
f11 8.06E+04 1.09E+05 1.34E+05 1.29E+05 

5. Conclusion 
This paper introduces a hybrid mechanism of PSO and DE algorithms based on Spark for 
LSGO problems. The proposed algorithm relies on Spark cloud computing platform and uses 
the RDD and island models to realize its parallelization. The proposed algorithm divides the 
global population into several subpopulations, and each subpopulation evolves independently. 
In order to realize the communication between subpopulations, migrating individuals are 
carried out at specific generation intervals. The results demonstrate that our proposal is a fast 
algorithm that has high acceleration performance and scalability. Using more nodes to solve 
massive or real-world optimization problems, and further improving the performance and the 
applicability of the algorithm will be considered in a future study. 
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