• 제목/요약/키워드: differential cytotoxicity

검색결과 48건 처리시간 0.033초

Transition-Metal-Mediated Cytotoxicity of Quinolones to L1210 Cells

  • Ko, Tong-Sung;Kwon, Tae-Ik;Kim, Moon-Jip;Park Il-Hyeon;Ryu Hyeong-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권6호
    • /
    • pp.442-448
    • /
    • 1994
  • Transition metals tested, $Cu^{2+}$, and $Ni^{2+}$, were found effective in the induction of the cytotoxicity of the quinolones tested, nalidixic acid, oxolinic acid, and pipemidic acid, against L1210 leukemia cells in vitro, whereas the alkaline earth metal, $Mg^{2+}$, was not. The differential effect of the metals on the quinolone cytotoxicity can be explained by their different mode of interaction with the quinolones. Our present difference spectroscopic titration data suggest that the transition metals can form DNA-intercalating agents, with the quinolones, which can cause the cytotoxicity.

Silver Materials Induce Differential Cytotoxicity and Pulmonary Toxicity Based on Size and Shape

  • Pak, Pyo June;Kang, Beob Hwa;Chung, Namhyun
    • Journal of Applied Biological Chemistry
    • /
    • 제58권2호
    • /
    • pp.113-116
    • /
    • 2015
  • Silver materials may be toxic in humans because they can enter the body and accumulate, typically in the lungs. We hypothesized that the cytotoxicity of naive silver materials is affected by their size and shape. Our in vitro assays revealed that the overall toxicity was in the following order: submicro-particles>wires>micro-particles. These results contrast with previous studies, which showed that silver wires are the most toxic among the three tested materials, possibly due to differences in cell lines. Evaluations of in vivo pulmonary toxicity revealed eryptosis in the cavity lining of the lung sections. The observed eryptosis was consistent with the in vitro results. Our results indicate that silver materialinduced cytotoxicity must be measured and compared using various methods.

Dendritic cells resist to disulfiram-induced cytotoxicity, but reduced interleukin-12/23(p40) production

  • Haebeen Jung;Hong-Gu Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권5호
    • /
    • pp.471-479
    • /
    • 2023
  • Disulfiram (DSF), a medication for alcoholism, has recently been used as a repurposing drug owing to its anticancer effects. Despite the crucial role of dendritic cells (DCs) in immune homeostasis and cancer therapy, the effects of DSF on the survival and function of DCs have not yet been studied. Therefore, we treated bone marrow-derived DCs with DSF and lipopolysaccharide (LPS) and performed various analyses. DCs are resistant to DSF and less cytotoxic than bone marrow cells and spleen cells. The viability and metabolic activity of DCs hardly decreased after treatment with DSF in the absence or presence of LPS. DSF did not alter the expression of surface markers (MHC II, CD86, CD40, and CD54), antigen uptake capability, or the antigen-presenting ability of LPS-treated DCs. DSF decreased the production of interleukin (IL)-12/23 (p40), but not IL-6 or tumor necrosis factor-α, in LPS-treated DCs. We considered the granulocyte-macrophage colony-stimulating factor (GM-CSF) as a factor to make DCs resistant to DSF-induced cytotoxicity. The resistance of DCs to DSF decreased when GM-CSF was not given or its signaling was inhibited. Also, GM-CSF upregulated the expression of a transcription factor XBP-1 which is essential for DCs' survival. This study demonstrated for the first time that DSF did not alter the function of DCs, had low cytotoxicity, and induced differential cytokine production.

Anti-inflammatory Effect of Methanol Extract from Safflower Seeds

  • Kim, Hyun-Jin
    • International Journal of Oral Biology
    • /
    • 제41권2호
    • /
    • pp.83-88
    • /
    • 2016
  • Periodontitis is an inflammatory disease, which destroys the connective tissue and the alveolar bone. Recently, it has been suggested that the effect of natural substances could be induced into an anti-inflammatory environment. However, the effect of Safflower seed extract (SAF-M) associated with periodontitis has not been investigated yet. Therefore, the purpose of this study was to assess the anti-inflammatory effects of SAF-M. Cytotoxicity was assessed through MTS analysis using hGF and hPDL cells. Periodontitis was induced by injecting LPS into gingival tissue on the maxillary molars of rats ($45{\mu}g$ LPS/one time, 3 times a week for 3 weeks). SAF-M was administered daily at 30 mg/kg and 100 mg/kg. Alveolar bone resorption was evaluated through the micro-CT. hGF and hPDL cells showed differential cytotoxicity in response to SAF-M at 5 mg/ml and 1 mg/ml concentrations. Micro-CT showed reduction of the alveolar bone resorption in the SAF-M treatment group. These results suggested that SAF-M is a potential therapeutic agent for periodontitis.

PEGylation of Silk Fibroin Model Peptide

  • Kweon, Hae-Yong;Jo, You-Young;Yeo, Joo-Hong;Woo, Soon-Ok;Han, Sang-Mi;Lee, Kwang-Gill
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제20권2호
    • /
    • pp.87-91
    • /
    • 2010
  • Silk fibroin model peptide, alanine pentamer was synthesized through solid-phase method and modified with poly(ethylene glycol). Nuclear magnetic resonance spectrometry and Fourier-transform infrared spectroscopy showed the conformation of alanine pentamer, $\beta$-sheet structure and random coil conformation were not changed with PEGylation. Differential scanning calorimetry showed that relatively strong exothermic peak around $180^{\circ}C$ by PEGylation. No cytotoxicity of PEGylated pentamer was observed by L929 cell proliferation test.

N-Acetylphytosphingosine Enhances the Radiosensitivity of Lung Cancer Cell Line NCI-H460

  • Han, Youngsoo;Kim, Kisung;Shim, Ji-Young;Park, Changsoe;Song, Jie-Young;Yun, Yeon-Sook
    • Molecules and Cells
    • /
    • 제25권2호
    • /
    • pp.224-230
    • /
    • 2008
  • Ceramides are well-known second messengers that induce apoptosis in various kinds of cancer cells, and their effects are closely related to radiation sensitivity. Phytoceramides, the yeast counterparts of the mammalian ceramides, are also reported to induce apoptosis. We investigated the effect of a novel ceramide derivative, N-acetylphytosphingosine (NAPS), on the radiosensitivity of NCI-H460 human lung carcinoma cells and its differential cytotoxicity in tumor and normal cells. The combination of NAPS with radiation significantly increased clonogenic cell death and caspase-dependent apoptosis. The combined treatment greatly increased Bax expression and Bid cleavage, but not Bcl-2 expression. However, there was no effect on radiosensitivity and apoptosis in BEAS2B cells, which derive from normal human bronchial epithelium. Cell proliferation and DNA synthesis were significantly inhibited by NAPS in both NCI-H460 and BEAS2B cells, but only the BEAS2B cells recovered by 48h after removal of the NAPS. Furthermore, the NCI-H460 cells underwent more DNA fragmentation than the BEAS2B cells in response to NAPS. Our results indicate that NAPS may be a potential radiosensitizing agent with differential effects on tumor vs. normal cells.

Differential Inhibition of $MPP^+$- or 6-Hydroxydopamine-induced Cell Viability Loss in PC12 Cells by Trifluoperazine and W-7

  • Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제9권4호
    • /
    • pp.247-253
    • /
    • 2005
  • The present study assessed the effect of calmodulin antagonists trifluoperazine and W-7 against the cytotoxicity of $MPP^+$ and 6-bydroxydoparnine (6-OHDA) in relation to the mitochondrial dysfunction and cell death in PC12 cells. Trifluoperazine (an inhibitor of the mitochondrial permeability transition and calmodulin antagonist) and W-7 (a specific calmodulin antagonist) significantly attenuated the $MPP^+-induced$ cell viability loss in PC12 cells with a maximum inhibition at $0.5{\sim}1{\mu}M$; beyond these concentrations the inhibitory effect declined. Both compounds at this concentration range did not cause cell death significantly. In contrast to $MPP^+$, the trifluoperazine and W-7 did not depress the cytotoxic effect of 6-OHDA. Addition of trifluoperazine and W-7 inhibited the cytosolic accumulation of cytochrome c and caspase-3 activation in PC12 cells treated with $MPP^+$ and attenuated the formation of reactive oxygen species and the depletion of GSH, whereas both compounds did not reduce the effect of 6-OHDA. The results show that trifluoperazine and W-7 may attenuate the cytotoxicity of $MPP^+$ by inhibition of the mitochondrial permeability transition and calmodulin. Meanwhile, the cytotoxic effect of 6-OHDA seems to be mediated by the actions, which are different from $MPP^+$.

Low temperature wet-chemical synthesis of spherical hydroxyapatite nanoparticles and their in situ cytotoxicity study

  • Mondal, Sudip;Dey, Apurba;Pal, Umapada
    • Advances in nano research
    • /
    • 제4권4호
    • /
    • pp.295-307
    • /
    • 2016
  • The present research work reports a low temperature ($40^{\circ}C$) chemical precipitation technique for synthesizing hydroxyapatite (HAp) nanoparticles of spherical morphology through a simple reaction of calcium nitrate tetrahydrate and di-ammonium hydrogen phosphate at pH 11. The crystallinity of the single-phase nanoparticles could be improved by calcinating at $600^{\circ}C$ in air. Thermogravimetric and differential thermal analysis (TG-DTA) revealed the synthesized HAp is stable up to $1200^{\circ}C$. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) studies confirmed the formation of spherical nanoparticles with average size of $23.15{\pm}2.56nm$ and Ca/P ratio of 1.70. Brunauer-Emmett-Teller (BET) isotherm of the nanoparticles revealed their porous structure with average pore size of about 24.47 nm and average surface area of $78.4m2g^{-1}$. Fourier transform infrared spectroscopy (FTIR) was used to confirm the formation of P-O, OH, C-O chemical bonds. Cytotoxicity and MTT assay on MG63 osteogenic cell lines revealed nontoxic bioactive nature of the synthesized HAp nanoparticles.

Differential Protein Quantitation in Mouse Neuronal Cell Lines using Amine-Reactive Isobaric Tagging Reagents with Tandem Mass Spectrometry

  • Cho, Kun;Park, Gun-Wook;Kim, Jin-Young;Lee, Sang-Kwang;Oh, Han-Bin;Yoo, Jong-Shin
    • Mass Spectrometry Letters
    • /
    • 제1권1호
    • /
    • pp.25-28
    • /
    • 2010
  • The high-throughput identification and accurate quantification of proteins are essential strategies for exploring cellular functions and processes in quantitative proteomics. Stable isotope tagging is a key technique in quantitative proteomic research, accompanied by automated tandem mass spectrometry. For the differential proteome analysis of mouse neuronal cell lines, we used a multiplexed isobaric tagging method, in which a four-plex set of amine-reactive isobaric tags are available for peptide derivatization. Using the four-plex set of isobaric tag for relative and absolute quantitation (iTRAQ) reagents, we analyzed the differential proteome in several stroke time pathways (0, 4, and 8 h) after the mouse neuronal cells have been stressed using a glutamate oxidant. In order to obtain a list of the differentially expressed proteins, we selected those proteins which had apparently changed significantly during the stress test. With 95% of the peptides showing only a small variation in quantity before and after the test, we obtained a list of eight up-regulated and four down-regulated proteins for the stroke time pathways. To validate the iTRAQ approach, we studied the use of oxidant stresses for mouse neuronal cell samples that have shown differential proteome in several stroke time pathways (0, 4, and 8 h). Results suggest that histone H1 might be the key protein in the oxidative injury caused by glutamate-induced cytotoxicity in HT22 cells.

고동아말감과 Glass ionomer-silver cement의 생물학적 평가에 관한 연구 (A BIOLOGICAL EVALUATION OF HIGH COPPER AMALGAM AND GLASS IONOMER-SILVER CEMENT)

  • 오병원;최호영;민병순;박상진
    • Restorative Dentistry and Endodontics
    • /
    • 제15권2호
    • /
    • pp.1-16
    • /
    • 1990
  • This study was to evaluate the cytotoxic effect in vitro and the tissue response within the rat peritoneal cavity to high copper amalgam and glass ionomer-silver cement, suggested for use as a retrograde endodontic filling material. In the cytotoxicity experiment, the radioactively ($^{51}Cr$) labeled L929 mouse fibroblasts were employed to determine the relative cytotoxicity of two experimental materials. Those materials were evaluated immediately after set and after one and seven days setting. In the tissue response experiment, two experimental materials were to evaluate mean peritoneal cellular count, differential cell count and the content of silver and copper in pooled packed cells and eluate samples taken by peritoneal lavage technique, and compared with surgical control after one day. two, four and six weeks of implantation. The results were as following: 1. High copper amalgam exhibited significant cytotoxicity immediately after set but showed no sign of toxicity after one day and seven days setting materials. 2. Glass ionomer-silver cement showed no sign of toxicity immediately after set and after one day and seven days setting. 3. High copper amalgam and glass ionomer-silver cement groups produce no significant difference in the mean peritoneal cell count when compared with the surgical control group after one day, two and four weeks of implantation. Surgical control group exhibited significantly a greater cell count when compared with the High copper amalgam group after six weeks. 4. High copper amalgam group increased significantly in the percentage macrophages after four and six weeks of implantation when compared with surgical control group. 5. The trace metal analysis involved an increased silver content in the elutes and an increased copper content in the packed cells of high copper amalgam group, and an increased silver content in the packed cells and elutes of glass ionomer-silver cement group.

  • PDF