• Title/Summary/Keyword: differential coefficient

Search Result 456, Processing Time 0.027 seconds

Analysis of The Operation of a Low Temperature Differential Model Stilting Engine (저온도차 모형 스터링 엔진의 작동 해석)

  • Kim, Jung-Kuk;Shim, Kyung-Yong;Jung, Pyung-Suk
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.199-204
    • /
    • 2000
  • A low temperature differential model stirling engine is manufactured, and its operation characteristics are measured and analyzed by SIMPLE analysis model, in which heat transfer processes are simply considered. The heat transfer coefficients between working fluid and heat sources in the analysis are estimated by comparing the P-V diagrams by experiment and by analysis. This result may be very useful for further design and manufacture of model Stilting engines as well as real engines because it provides a comparatively correct predictions of the operation conditions and power output. It will be also conveniently used as an educational material for mechanical engineering students because it can be a nice example of optimal design process to decide the phase angle and compression ratio of engine design with a simple but realistic simulation.

  • PDF

A Study on the Effect of Piston Pin Offset on a Piston Motion and Kinetic Energy Loss (피스톤핀 옵셋이 피스톤운동과 운동에너지 손실에 미치는 영향에 관한 연구)

  • Han, D.J.;Choi, J.K.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.1 no.3
    • /
    • pp.22-33
    • /
    • 1993
  • A theoretical analysis of predicting the detailed motion of a piston-crank mechanism within piston-guide clearance is presented, and the analysis is applied to the piston motion in a gasoline engine. A piston movement program is developed to calculate the piston attitude relative to the bore, the piston to bore impact velocity and kinetic energy loss and the net transverse force acting on the piston. This paper presents the formulation of a set of differential equations governing the transverse and rotational motion of a piston. These equations of motion were solved by well established Runge-Kutta method. As a result of this study, it is possible to predict the effects of piston geometry and piston pin offset on a piston motion and kinetic energy loss.

  • PDF

A Determination Method of the Risk Adjusted Discount Rate for Economically Decision Making on Advanced Manufacturing Technologies Investment (첨단제조기술 투자의 경제적 의사결정을 위한 위험조정할인율의 결정방법)

  • 오병완;최진영
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.51
    • /
    • pp.151-161
    • /
    • 1999
  • For many decades, Deterministic DCF approach has been widely used to evaluate investment opportunities. Under new manufacturing conditions involving uncertainty and risk, the DCF approach is not appropriate. In DCF, Risk is incorporated in two ways: certainty equivalent method, risk adjusted discount rate. This paper proposes a determination method of the Risk Adjusted Discount Rate for economically decision making advanced manufacturing technologies. Conventional DCF techniques typically use discount rate which do not consider the difference in risk of differential investment options and periods. Due to their relative efficiency, advanced manufacturing technologies have different degree of risk. The risk differential of investments is included using $\beta$ coefficient of capital asset pricing model. The comparison between existing and proposed method investigated. The DCF model using proposed risk adjusted discount rate enable more reasonable evaluation of advanced manufacturing technologies.

  • PDF

Effect of a chemical reaction on magnetohydrodynamic (MHD) stagnation point flow of Walters-B nanofluid with newtonian heat and mass conditions

  • Qayyum, Sajid;Hayat, Tasawar;Shehzad, Sabir A.;Alsaedi, Ahmed
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1636-1644
    • /
    • 2017
  • The main purpose of this article is to describe the magnetohydrodynamic stagnation point flow of Walter-B nanofluid over a stretching sheet. The phenomena of heat and mass transfer are based on the involvement of thermal radiation and chemical reaction. Characteristics of Newtonian heating are given special attention. The Brownian motion and thermophoresis models are introduced in the temperature and concentration expressions. Appropriate variables are implemented for the transformation of partial differential frameworks into sets of ordinary differential equations. Plots for velocity, temperature, and nanoparticle concentration are displayed and analyzed for governing parameters. The skin friction coefficient and local Nusselt and Sherwood numbers are studied using numerical values. The temperature and heat transfer rate are enhanced within the frame of the thermal conjugate parameter.

The simulated floating inductor using of fully-differential OTAs and its application to a ladder-type third-order elliptic low-pass filter

  • Lee, Ju-Chan;Lee, Jang-Hyuck;Park, Hee-Jong;Shin, Hee-Jong;Park, Ji-Mann;Cha, Hyeong-Woo;Chung, Won-Sup
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.159-162
    • /
    • 2000
  • Novel simulated floating inductor (SFI) using fully-differential operational transconductance amplifier (FOTA) is presented. The SFI only consists of two FOTA and a capacitor. A ladder-type third-order elliptic low-pass filter is also presented for the SFI’s application. The theory of operations described and the simulation results are used to verify theoretical predictions. The SFI shows close agreement between predicted behavior and simulation performance. The simulation results that the SFI have The temperature coefficient of-179 ppm/$^{\circ}C$ and Q factor of 120 at 200kHz at supply voltage ${\pm}$5 V.

  • PDF

Study for the Safety of Ships' Nonlinear Rolling Motion in Beam Seas

  • Long, Zhan-Jun;Lee, Seung-Keon;Jeong, Jae-Hun;Lee, Sung-Jong
    • Journal of Navigation and Port Research
    • /
    • v.33 no.9
    • /
    • pp.629-634
    • /
    • 2009
  • Vessels stability problems need to resolve the nonlinear mathematical models of rolling motion. For nonlinear systems subjected to random excitations, there are very few special cases can obtain the exact solutions. In this paper, the specific differential equations of rolling motion for intact ship considering the restoring and damping moment have researched firstly. Then the partial stochastic linearization method is applied to study the response statistics of nonlinear ship rolling motion in beam seas. The ship rolling nonlinear stochastic differential equation is then solved approximately by keeping the equivalent damping coefficient as a parameter and nonlinear response of the ship is determined in the frequency domain by a linear analysis method finally.

Study for the Nonlinear Rolling Motion of Ships in Beam Seas

  • Long, Zhan-Jun;Lee, Seung-Keon;Jeong, Jae-Hun;Lee, Sung-Jong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2009.10a
    • /
    • pp.239-240
    • /
    • 2009
  • Vessels stability problems need to resolve the nonlinear mathematical models of rolling motion. For nonlinear systems subjected to random excitations, there are very few special cases can obtain the exact solutions. In this paper, the specific differential equations of rolling motion for intact ship considering the restoring and damping moment have researched firstly. Then the partial stochastic linearization method is applied to study the response statistics of nonlinear ship rolling motion in beam seas. The ship rolling nonlinear stochastic differential equation is then solved approximately by keeping the equivalent damping coefficient as a parameter and nonlinear response of the ship is determined in the frequency domain by a linear analysis method finally.

  • PDF

Analysis of The Operation of a Low Temperature Differential Model Stirling Engines (저온도차 모형 스털링 엔진의 작동 해석)

  • Won Min Young;Jung Pyung Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.519-525
    • /
    • 2005
  • The operation of a low temperature differential model stirling engine is tested and analyzed by Simple analysis model. The heat transfer coefficients are required for Simple analysis, and the coefficients are determined by coinciding the P-V diagram of analysis to the diagram of experiment. The results show a good agreement. However the heat transfer coefficients are quite high by comparison with the ordinary forced convective heat transfer cases.

THE INFINITE GROWTH OF SOLUTIONS OF SECOND ORDER LINEAR COMPLEX DIFFERENTIAL EQUATIONS WITH COMPLETELY REGULAR GROWTH COEFFICIENT

  • Zhang, Guowei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.2
    • /
    • pp.419-431
    • /
    • 2021
  • In this paper we discuss the classical problem of finding conditions on the entire coefficients A(z) and B(z) guaranteeing that all nontrivial solutions of f" + A(z)f' + B(z)f = 0 are of infinite order. We assume A(z) is an entire function of completely regular growth and B(z) satisfies three different conditions, then we obtain three results respectively. The three conditions are (1) B(z) has a dynamical property with a multiply connected Fatou component, (2) B(z) satisfies T(r, B) ~ log M(r, B) outside a set of finite logarithmic measure, (3) B(z) is extremal for Denjoy's conjecture.

Nonlinear resonance of axially moving GPLRMF plates with different boundary conditions

  • Jin-Peng Song;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.86 no.3
    • /
    • pp.361-371
    • /
    • 2023
  • Boundary condition is an important factor affecting the vibration characteristics of structures, under different boundary conditions, structures will exhibit different vibration behaviors. On the basis of the previous work, this paper extends to the nonlinear resonance behavior of axially moving graphene platelets reinforced metal foams (GPLRMF) plates with geometric imperfection under different boundary conditions. Based on nonlinear Kirchhoff plate theory, the motion equations are derived. Considering three boundary conditions, including four edges simply supported (SSSS), four edges clamped (CCCC), clamped-clamped-simply-simply (CCSS), the nonlinear ordinary differential equation system is obtained by Galerkin method, and then the equation system is solved to obtain the nonlinear ordinary differential control equation which only including transverse displacement. Subsequently, the resonance response of GPLRMF plates is obtained by perturbation method. Finally, the effects of different boundary conditions, material properties (including the GPLs patterns, foams distribution, porosity coefficient and GPLs weight fraction), geometric imperfection, and axial velocity on the resonance of GPLRMF plates are investigated.