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THE INFINITE GROWTH OF SOLUTIONS OF SECOND

ORDER LINEAR COMPLEX DIFFERENTIAL EQUATIONS

WITH COMPLETELY REGULAR GROWTH COEFFICIENT

Guowei Zhang

Abstract. In this paper we discuss the classical problem of finding con-
ditions on the entire coefficients A(z) and B(z) guaranteeing that all non-

trivial solutions of f ′′ + A(z)f ′ + B(z)f = 0 are of infinite order. We as-

sume A(z) is an entire function of completely regular growth and B(z) sat-
isfies three different conditions, then we obtain three results respectively.

The three conditions are (1) B(z) has a dynamical property with a multi-
ply connected Fatou component, (2) B(z) satisfies T (r,B) ∼ logM(r,B)

outside a set of finite logarithmic measure, (3) B(z) is extremal for Den-

joy’s conjecture.

1. Introduction and main results

In this article, we shall use the basic results of Nevanlinna theory in the
complex plane C and assume the reader is familiar with standard notations,
such as T (r, f),m(r, f), N(r, f) and δ(a, f), for example see [19,34]. Nevanlinna
theory plays an important role in the study of complex differential equations,
and there appear many results in this areas recent years. In this paper, the
order of an entire function f is defined as

ρ(f) = lim sup
r→+∞

log+ T (r, f)

log r
= lim sup

r→+∞

log+ log+M(r, f)

log r
,

where log+ x = max{log x, 0} and M(r, f) denotes the maximum modulus of f
on the circle |z| = r.

Our main purpose is to consider the second order linear differential equation

f ′′ +A(z)f ′ +B(z)f = 0,(1)
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where A(z) and B(z) are entire functions. It’s well known that all solutions of
(1) are entire functions. If B(z) is transcendental and f1, f2 are two linearly
independent solutions of this equation, then at least one of f1, f2 is of infinite
order, see [16]. However, there exist some equations of form (1) that have a
nontrivial solution of finite order. For example, f(z) = ez satisfies differential
equation f ′′+e−zf ′−(e−z+1)f = 0. A natural question is that what conditions
on A(z) and B(z) can guarantee that every solution f(6≡ 0) of the equation
(1) is of infinite order? There have been many results in the literature on this
subject, see [16,19]. For example, we collect some classical results and give the
following theorem.

Theorem 1.1. Let A(z) and B(z) be nonconstant entire functions, satisfying
any one of the following additional hypotheses:

(1) ρ(A) < ρ(B), see [13];
(2) A(z) is a polynomial and B(z) is transcendental, see [13];
(3) ρ(B) < ρ(A) ≤ 1

2 , see [15].

Then every nontrivial solution f of the equation (1) has infinite order.

This is a hot research object and a lot of works have sprung up, such as
[7, 11, 15, 21, 23–25, 31–33]. Our main purpose is continue to study the above
question, try to find conditions which A(z), B(z) should satisfy to ensure that
nontrivial solution of (1) has infinite order. Since every nontrivial solution of
(1) satisfies ρ(f) ≥ max{ρ(A), ρ(B)}, so we consider the questions under the
condition max{ρ(A), ρ(B)} < ∞ in the following theorems. At first, if ρ(r)
is positive, differentiable for large r and satisfies limr→∞ ρ(r) = ρ ∈ (0,∞),
limr→∞ ρ′(r)r log r = 0, then ρ(r) is called a proximate order, see [10, Section
2, Chapter 2]. In order to motivate and formulate the result, recall the indicator
h(θ) of an entire function A(z) of order ρ with respect to the proximate order
ρ(r) is defined by

h(θ) = lim sup
r→∞

log |A(reiθ)|
rρ(r)

,(2)

where ρ(r) → ρ as r → ∞. The function A(z) is said to be completely reg-
ular growth (in the sense of Levin and Pfluger) if there exist disks D(ak, sk)
satisfying ∑

|ak|≤r

sk = o(r)(3)

such that

log |A(reiθ)| = h(θ)rρ(r) + o(rρ(r)), reiθ 6∈
⋃
k

D(ak, sk)(4)

as r →∞, uniformly in θ. A union of disks satisfying (3) is called a C0 set. We
refer to Levin’s book [22] for a thorough discussion of functions of completely
regular growth. There have been some works about the coefficients of (1)



INFINITE GROWTH, COMPLEX DIFFERENTIAL EQUATIONS 421

involving completely regular growth, such as [14, 30]. In [14], the authors got
the following result.

Theorem 1.2. Let A(z) be an entire function of completely regular growth,
and let B(z) be any entire function such that ρ(B) < ρ(A). Define E = {θ ∈
[−π, π) : h(θ) ≤ 0}. Then every nonzero solution of (1) satisfies

ρ(f) ≥ max{ρ(A),
(

21
√
m(E)

)−1
− 1},

where ρ(f) =∞ if m(E) = 0, here m(E) is the Lebesgue measure of E.

From the above theorem, it’s easy to see that if h(θ) > 0 for almost every
θ ∈ [0, 2π), then the nonzero solutions of (1) have infinite order. In this paper,
we release the restriction on h(θ), that is, assume that h(θ) can take negative
value for θ in some intervals which are contained in [0, 2π). Moreover, we should
give some more conditions for B(z), then the order of solutions of (1) are of
infinite order.

In our first theorem let B(z) have a dynamical property. A result involving
the coefficient of complex differential equation with dynamical property was
given in [37]. For the convenience of reading an introduction of dynamical
property we used here is given in Section 2.

Theorem 1.3. Let A(z) be a completely regular growth entire function and the
set E = {θ ∈ [0, 2π) : h(θ) = 0} is of Lebesgue measure zero, and let B(z) be a
transcendental entire function with a multiply connected Fatou component such
that ρ(A) 6= ρ(B). Then every nontrivial solution of (1) is of infinite order.

In the second result, we assume B(z) is a transcendental entire function
satisfying T (r,B) ∼ logM(r,B) as r → ∞ outside a set of finite logarithmic
measure. This method was ever used in [29, Lemma 2.7]. The function B(z) in
Theorem 1.4 really exists. For example, entire function has Fejér gaps. Here,
f(z) =

∑∞
n=1 anz

λn is said to have Fejér gaps if
∑∞
n=1 λ

−1
n < ∞, see [26]. A

result involving Fejér gaps and concerning infinite growth of the solution of the
equation (1) was given in [20].

Theorem 1.4. Let A(z) be a completely regular growth entire function and
the set E = {θ ∈ [0, 2π) : h(θ) = 0} is of Lebesgue measure zero, and let B(z)
be a transcendental entire function satisfying T (r,B) ∼ logM(r,B) as r →∞
outside a set of finite logarithmic measure such that ρ(A) 6= ρ(B). Then every
nontrivial solution of (1) is of infinite order.

In the sequel, we shall give the last result. In 1907 Denjoy [8] raised a
conjecture says if B(z) is an entire function with finite order ρ(B) and B(z) has
k distinct finite asymptotic values, then k ≤ 2ρ(B). This conjecture verified by
Ahlfors [1] in 1930. If k = 2ρ(B) we call B(z) extremal for Denjoy’s conjecture.
These functions have been well investigated, for example see Ahlfors [1] and
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Zhang [36]. An example of function extremal for Denjoy’s conjecture is

B(z) =

∫ z

0

sin tq

tq
dt,

where q is a positive integer. In fact, this function is of order q and has 2q
distinct finite asymptotic values as

ak = e
kπi
q

∫ ∞
0

sin rq

rq
dr,

where k = 1, 2, . . . , 2q, see [36, p. 28] for details. The study of growth of
solutions of linear complex differential equation involving function extremal for
Denjoy’s conjecture appeared in paper [31]. Motivated by this idea, we consider
the situation B(z) is extremal for Denjoy’s conjecture in (1) and obtain the
following result.

Theorem 1.5. Let A(z) be a completely regular growth entire function and
the set E = {θ ∈ [0, 2π) : h(θ) = 0} is of Lebesgue measure zero, and let B(z)
be an entire function extremal for Denjoy’s conjecture such that ρ(A) 6= ρ(B).
Then every nontrivial solution of (1) is of infinite order.

In the following, we shall give an example to illustrate the condition for
A(z) in the above results do exist. Firstly we introduce the definition so called
SCRG. An example of completely regular growth function is the exponential
sum

A(z) =

n−1∑
k=0

ak exp(bkz),

provided arg bk < arg bk+1 < arg bk + π for 0 ≤ k ≤ n − 2 and arg b0 <
arg bn−1 − π, see details in [28]. In fact, exponential polynomials form an
important subclass of functions of completely regular growth. It’s well known
[27] that the zeros of exponential sums are close to certain rays. Motivated
by this we consider the functions satisfying the following condition, which are
more general than the exponential polynomials.

Definition 1.6. If A(z) is an entire function satisfying the following items,
then we say A(z) has the SCRG (special completely regular growth) property.

(1) Let the rays arg z = θj be the accumulated lines of zeros of A(z), where
j = 1, 2, . . . ,m and θ1 < θ2 < · · · < θm < θm+1 = θ1 + 2π;

(2) Let h(θ) be the indicator of A(z) in the sector S(θj , θj+1) = {z = reiθ :
r > 0, θj < θ < θj+1}, j = 1, 2, . . . ,m and ρ(r)(→ ρ) be a proximate
order of A(z);

(3) ε(r) = 1/ logN (r) for some N ∈ N, where logN denotes the N -th iterate
of the logarithm;

(4) log |A(reiθ)| = h(θ)rρ+O(rρ(r)ε(r)) for |θ−θj | > ε(r), j = 1, 2, . . . ,m.

The SCRG property was first used in [6], in which some functions satisfy-
ing this property were given and the complex dynamical properties of entire
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function satisfying SCRG were investigated. By Lemma 2.5, it’s easy to see
that the functions have SCRG property satisfying the condition for A(z) in
Theorems 1.3, 1.4 and 1.5. Inspired by this, we assume the coefficient A(z) of
the equation (1) involving the SCRG property and get the following result.

Corollary 1.7. Let A(z) be an entire function satisfying the SCRG property,
and let B(z) be a transcendental entire function satisfying the condition for
B(z) in Theorems 1.3, 1.4 and 1.5 respectively. Then every nontrivial solution
of (1) is of infinite order.

2. Preliminary lemmas and auxiliary results

The Lebesgue linear measure of a set E ⊂ [0,∞) is meas(E) =
∫
E
dt, and

the logarithmic measure of a set F ⊂ [1,∞) is ml(F ) =
∫
F
dt
t . The upper and

lower logarithmic densities of F ⊂ [1,∞) are given by

log densF = lim sup
r→∞

ml(F ∩ [1, r])

log r

and

log densF = lim inf
r→∞

ml(F ∩ [1, r])

log r

respectively. We say F has logarithmic density if log dens(F ) = log dens(F ).
The proofs of our results highly rely on the estimation of logarithmic deriva-

tives, which is due to Gundersen [12].

Lemma 2.1 ([12]). Let f be a transcendental meromorphic function of finite
order ρ(f). Let ε > 0 be a given real constant, and let k and j be two integers
such that k > j ≥ 0. Then there exists a set E ⊂ (1,∞) with ml(E) <∞ such
that for all z satisfying |z| 6∈ (E ∪ [0, 1]), we have∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣ ≤ |z|(k−j)(ρ(f)−1+ε).(5)

The following result which was proved by Zheng [38] is crucial to the proof
of Theorem 1.2. Set Mc(r, a, f) = max{|f(z)| : |z − a| = r|}, Lc(r, a, f) =
min{|f(z)| : |z − a| = r}. When a = 0, we simply write M(r, f), L(r, f) for
Mc(r, 0, f), Lc(r, a, f) respectively.

Lemma 2.2 ([38, Corollary 1]). Let f(z) be a transcendental meromorphic
function with at most finitely many poles. If J(f) has only bounded components,
then for any complex number a, there exist a constant 0 < d < 1 and two
sequences {rn} and {Rn} of positive numbers with rn → ∞ and Rn/rn →
∞(n→∞) such that

Mc(r, a, f)d ≤ Lc(r, a, f), r ∈ G,(6)

where G =
⋃∞
n=1{r : rn < r < Rn}.
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Remark 2.3. In the above lemma, particularly we have M(r, f)d ≤ L(r, f), r ∈
G. Obviously, the set G has infinite logarithmic measure.

In the below, in order to explain the assumption of Theorem 1.3 we give some
introduction of complex dynamics, see [5] for example. The Fatou set F (f) of a
transcendental entire function f is the subset of the plane C where the iterates
fn of f form a normal family. The complement of F (f) in C is called the Julia
set J(f) of f . The set F (f) is completely invariant under f in the sense that
z ∈ F (f) if and only if f(z) ∈ F (f). Therefore, if U is a component of F (f), a
so-called Fatou component, then there exists, for some n = 0, 1, 2, . . . , a Fatou
component Un such that fn(U) ⊂ Un. If, for some p ≥ 1, we have Up = U0 = U ,
then we say that U is a periodic component of period p, assuming p to be the
minimal. If Un is not eventually periodic, then U is a wandering domain of f .
Although some entire functions with only simply connected Fatou component,
such as Eremenko-Lyubich class function [9], there are many examples of entire
function with multiply connected Fatou components. The first such function
was constructed by Baker [2], who proved later [4] that this function has a
multiply connected Fatou component that is a wandering domain. Moreover,
Baker showed [3] that this is not a special property of this example: if U is
any multiply connected Fatou component of a transcendental entire function f ,
then U is wandering domain which called Baker wandering domain. It has the
following properties: (1) each Un is bounded and multiply connected; (2) there
exists N ∈ N such that Un and 0 lie in a bounded complementary component
of Un+1 for n ≥ N ; (3) dis(Un, 0)→∞ as n→∞. Therefore, if transcendental
entire function f has a multiply connected Fatou component, then J(f) has
only bounded component.

Lemma 2.4 (Phragmén-Lindelöf principle, [17, Theorem 7.3]). Let f(z) be
an analytic function of z = reiθ, regular in a region D between rays making
a sector π/α at the origin and on the straight lines themselves. Suppose that

|f(z)| ≤M on the lines and as r →∞, f(z) = O(er
β

), where β < α uniformly.
Then |f(z)| ≤M throughout D.

Lemma 2.5 ([22, p. 115, Corollary]). If the zeros of entire function A(z)
of proximate order ρ(r) are regular distribution for the index ρ(r), and if the
density of the set of zeros within some sectors S(α, β) is equal to zero, then the
indicator function within this sector is a ρ-trigonometric function, i.e.,

h(θ) = a cos ρθ + b sin ρθ,(7)

where α ≤ θ ≤ β, a and b are constants. If, however, inside this sector there
are no zeros of the function, then for α < θ < β there exists the limit

h(θ) = lim
r→∞

log |A(reθ)|
rρ(r)

,(8)

where the variable tends to the limit uniformly when α+ ε ≤ θ ≤ β− ε for any
given ε > 0.
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The following result due to Gundersen [13, Theorem 3] shows the asymptotic
properties of finite order solutions of the equation (1).

Lemma 2.6. Let A(z) and B(z)(6≡ 0) be two entire functions such that for
real constants α, β, θ1, θ2, where α > 0, β > 0 and θ1 < θ2,

|A(z)| ≥ exp{(1 + o(1))α|z|β}

and

|B(z)| ≤ exp{o(1)|z|β}
as z → ∞ in S(θ1, θ2) = {z : θ1 ≤ arg z ≤ θ2}. Let ε > 0 be a given small
constant, and let S(θ1 + ε, θ2 − ε) = {z : θ1 + ε ≤ arg z ≤ θ2 − ε}. If f is a
nontrivial solution of (1) with ρ(f) <∞, then the following conclusions hold.

(1) There exists a constant b(6= 0) such that f(z)→ b as z →∞ in S(θ1 +
ε, θ2 − ε). Furthermore,

|f(z)− b| ≤ exp{−(1 + o(1))α|z|β}

as z →∞ in S(θ1 + ε, θ2 − ε).
(2) For each integer k ≥ 1,

|f (k)(z)| ≤ exp{−(1 + o(1))α|z|β}

as z →∞ in S(θ1 + ε, θ2 − ε).

Lemma 2.7 ([18, Lemma 2.2]). Let ϕ(r) be a non-decreasing, continuous func-
tion on R+. Suppose that

lim sup
r→∞

logϕ(r)

log r
> α > 0

and set G = {r ∈ R+ : ϕ(r) ≥ rα}. Then we have log dens(G) > 0.

3. Proof of Theorems

3.1. Proof of Theorem 1.3

The case ρ(A) < ρ(B) has been proved by Gundersen [13, Theorem 2], thus
we assume ρ(A) > ρ(B). Suppose that there is a nontrivial solution f of (1)
with finite order. Set E∗ = {θ ∈ [0, 2π) : h(θ) ≤ 0}. We divide into two cases
on basis of meas(E∗) = 0 or meas(E∗) > 0.

Case 1. Assume that meas(E∗) = 0, then the indicator of A(z) satisfies
h(θ) > 0 for every θ ∈ [0, 2π) \E∗. We give the details following the idea from
[31] for the convenience of reading. By (4), we have

log |A(reiθ)| = h(θ)rρ(r) + o(rρ(r))

for z = reiθ satisfying θ ∈ [0, 2π) \E∗ and outside a C0 set, where ρ(r)→ ρ(A)

as r →∞. Then for any given δ ∈ (0, π
4ρ(A) ) and η ∈ (0, ρ(A)−ρ(B)

4 ), we have

|A(z)| ≥ exp{(1 + o(1))α|z|ρ(A)−η},(9)
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(10) |B(z)| ≤ exp{|z|ρ(B)+η} ≤ exp{|z|ρ(A)−2η} ≤ exp{o(1)|z|ρ(A)−η}
as z = reiθ(→ ∞) satisfying θ ∈ [0, 2π) \ E∗ and outside a C0 set, where
α is a positive constant depending on δ. Then by Lemma 2.6, there exist
corresponding constants bj 6= 0 such that

|f(z)− bj | ≤ exp{−(1 + o(1))α|z|ρ(A)−η}(11)

as z = reiθ(→ ∞) satisfying θ ∈ [0, 2π) \ E∗ and outside a C0 set. Then f(z)
is bounded in the whole complex plane by the Phragmén-Lindelöf principle.
Then f is a constant in the complex plane by Liouville’s theorem. Obviously,
this is a contradiction.

Case 2. Assume meas(E∗) > 0, then there exist some sectors in which the
indicator of A(z) satisfying h(θ) < 0. We can choose a ray arg z = θ∗ in these
sectors such that h(θ∗) < 0.

By Lemma 2.1, there exists a set E ⊂ (1,∞) with finite logarithmic measure
such that for all z satisfying |z| = r 6∈ E ∪ [0, 1],∣∣∣∣f (k)(z)f(z)

∣∣∣∣ ≤ |z|2ρ(f), k = 1, 2.(12)

Then, by Lemma 2.2, there exists a sequence {zn = rne
iθ∗} satisfying rn ∈

G \ (E ∪ [0, 1]) with rn →∞ as n→∞ such that

M(rn, B)d < L(rn, B) ≤ |B(zn)| ≤
∣∣∣∣f ′′(zn)

f(zn)

∣∣∣∣+ |A(zn)|
∣∣∣∣f ′(zn)

f(zn)

∣∣∣∣
≤ (1 + o(1))r2ρ(f)n ,(13)

where d ∈ (0, 1). Since B(z) is a nonconstant entire function, by [34, Theorem
1.4] we have

dT (rn, B) ≤ d logM(rn, B) ≤ 2ρ(f) log rn + o(1)(14)

as rn sufficiently large. Since B(z) is transcendental, we have limrn→∞
T (rn,B)
log rn

=∞. Thus, we get a contradiction from (14).

Remark 3.1. The situation of Case 1 can really happen, see Theorem 1.5 and
the following content in paper [6].

3.2. Proof of Theorem 1.4

As the similar arguments in Subsection 3.1, we only need to consider the
situation ρ(A) > ρ(B). Suppose that there is a nontrivial solution f of (1) with
finite order. We treat two cases on basis of meas(E∗) = 0 or meas(E∗) > 0.

Case 1. Assume that meas(E∗) = 0, then the indicator of A(z) satisfies
h(θ) > 0 for every θ ∈ [0, 2π) \ E∗. The arguments are similar as Case 1 in
Subsection 3.1.

Case 2. Assume meas(E∗) > 0, then there exist some sectors in which
the indicator of A(z) satisfying h(θ) < 0. Hence, there must exist an interval
IA ∈ [0, 2π) such that h(θ) < 0 for all θ ∈ IA. By Lemma 2.1, there exists a
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set E1 ⊂ (1,∞) with finite logarithmic measure such that for all z satisfying
|z| = r 6∈ E1 ∪ [0, 1], (12) holds. For given 0 < c < 1, set

IB(r) = {θ ∈ [0, 2π) : log |B(reiθ)| ≤ c logM(r,B)}(15)

and denote its Lebesgue measure by meas(IB(r)). It follows from the definition
of proximate function m(r,B) that

T (r,B) = m(r,B)

≤
(

2π −meas(IB(r))

2π

)
logM(r,B) + c

meas(IB(r))

2π
logM(r,B).(16)

Therefore, T (r,B) ∼ logM(r,B) outside a set E2 of finite linear measure
implies that meas(IB(r)) → 0 as r( 6∈ E2) → ∞. Combining (4), (12) with
(15), it leads to

M(r,B)c ≤ |B(reiθ)| ≤
∣∣∣∣f ′′(reiθ)f(reiθ)

∣∣∣∣+ |A(reiθ)|
∣∣∣∣f ′(reiθ)f(reiθ)

∣∣∣∣
≤ (1 + o(1))r2ρ(f)(17)

for r(6∈ E1 ∪ E2 ∪ [0, 1]) sufficiently large and θ ∈ IA \ IB(r). Since B(z) is
transcendental, we obtain a contradiction.

3.3. Proof of Theorem 1.5

We recall some properties of entire functions that are extremal for Denjoy’s
conjecture and the definition of Borel direction as follows.

Definition 3.1. Let B(z) be an entire (meromorphic) function in C with
0 < µ(B) <∞. A ray arg z ∈ [0, 2π) from the origin is called a Borel direction
of order ≥ µ(B) of B, if for any positive number ε and for any complex number
a ∈ C ∪ {∞}, possibly with two exceptions, the following inequality holds

lim sup
r→∞

log n(S(θ − ε, θ + ε, r), a, B)

log r
≥ µ(B),

where n(S(θ − ε, θ + ε, r), a, B) denotes the number of zeros, counting the
multiplicities, of B − a in the region S(θ − ε, θ + ε, r) = {z : θ − ε < arg z <
θ + ε, |z| < r}.

The definition of Borel direction of order ρ(B) is only need to replace ≥ µ(B)
with = ρ(B), see [36, p. 78].

Lemma 3.2 ([36, Theorem 4.11]). Let B(z) be an entire function extremal for
Denjoy’s conjecture. Then, for any θ ∈ [0, 2π), either arg z = θ is a Borel
direction of order ρ(B) of B(z) or there exists a constant δ(0 < δ < π/4), such
that

lim
|z|=r→∞

log log |B(z)|
log r

= ρ(B)(18)
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for all z ∈ S(θ− δ, θ+ δ)\E, E denotes a subset of S(θ− δ, θ+ δ), and satisfies

lim
r→∞

meas(S(θ − δ, θ + δ; r,∞) ∩ E) = 0,

where S(θ − δ, θ + δ; r,∞) = {z : θ − δ < arg z < θ + δ, 0 < |r| < +∞}.

Lemma 3.3 ([35, Lemma 1]). Let B(z) be an entire function of order ρ(B) ∈
(0,∞), and let S(ϕ1, ϕ2) = {z : ϕ1 < arg z < ϕ2} be a sector with ϕ2 − ϕ1 <
π

ρ(B) . If there exists a Borel direction of order ρ(B) of B(z) in S(ϕ1, ϕ2), then

for at least one of the two rays Lj = {z : arg z = ϕj , j = 1, 2}, say L2, we have

lim sup
r→∞

log log |B(reiϕ2)|
log r

= ρ(B).(19)

Proof. As the similar arguments in Subsection 3.1, we only need to consider
the situation ρ(A) > ρ(B). Suppose that there is a nontrivial solution f of (1)
with finite order. We treat two cases.

Case 1. Assume that meas(E∗) = 0, then the indicator of A(z) satisfies
h(θ) > 0 for every θ ∈ [0, 2π) \ E∗. The arguments are similar as Case 1 in
Subsection 3.1.

Case 2. Assume meas(E∗) > 0, then there exist some sectors in which
the indicator of A(z) satisfying h(θ) < 0. Hence, there must exist an interval
IA ∈ [0, 2π) such that h(θ) < 0 for all θ ∈ IA. We choose a ray arg z = θ∗

such that θ∗ ∈ IA. By Lemma 2.1, there exists a set E1 ⊂ (1,∞) with finite
logarithmic measure such that for all z satisfying |z| = r 6∈ E1 ∪ [0, 1], (12)
holds.

Subcase 2.1. Suppose the ray arg z = θ∗ is a Borel direction of order ρ(B)
of B(z). Give η sufficiently small such that the interval (θ∗−η, θ∗+η) ⊂ IA and
2η < π

ρ(A) . Choose ϕ1 ∈ (θ∗−η, θ∗) and ϕ2 ∈ (θ∗, θ∗+η), then ϕ2−ϕ1 <
π

ρ(A) .

By Lemma 3.3, at least one of two rays L1 : arg z = ϕ1 and L2 : arg z = ϕ2,
say L2, satisfies (19). Combining (4) with (12), it leads to

(20) |B(reiϕ2)| ≤
∣∣∣∣f ′′(reiϕ2)

f(reiϕ2)

∣∣∣∣+ |A(reiϕ2)|
∣∣∣∣f ′(reiϕ2)

f(reiϕ2)

∣∣∣∣ ≤ (1 + o(1))r2ρ(f)

for r 6∈ E1 sufficiently large. In view of Lemma 2.7 and (19), there exists a set
G ⊂ R with infinite logarithmic measure such that |B(reiθ)| > exp{rρ(B)−ε}
for r ∈ G, θ ∈ [0, 2π) and sufficiently small ε. Combining this with (20), we
obtain

exp{rρ(B)−ε} < |B(reiϕ2)| ≤ (1 + o(1))r2ρ(f)(21)

for r ∈ G \ E1. This is impossible.
Subcase 2.2. Suppose the ray arg z = θ∗ is not a Borel direction of order

ρ(B) of B(z). Take a sufficiently small positive constant δ such that (θ∗ −
δ, θ∗ + δ) ⊂ IA. By Lemma 3.2, we have

lim
|z|=r→∞

log log |B(z)|
log r

= ρ(B)(22)
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for all z ∈ S(θ∗ − δ, θ∗ + δ) \ E, E denotes a subset of S(θ − δ, θ + δ), and
satisfies limr→∞meas(S(θ− δ, θ+ δ; r,∞)∩E) = 0. Similar as in Subcase 2.1
we have

exp{rρ(B)−ε} < |B(reiθ)| ≤ (1 + o(1))r2ρ(f)(23)

for z = reiθ ∈ S(θ∗ − δ, θ∗ + δ) \ E and r ∈ G \ E1. This is also impossible.
Thus, we complete the proof. �
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[28] D. J. Sixsmith, Julia and escaping set spiders’ webs of positive area, Int. Math. Res.

Not. IMRN 2015, no. 19, 9751–9774. https://doi.org/10.1093/imrn/rnu245

[29] J. Wang and Z. Chen, Limiting directions of Julia sets of entire solutions to complex
differential equations, Acta Math. Sci. Ser. B (Engl. Ed.) 37 (2017), no. 1, 97–107.

https://doi.org/10.1016/S0252-9602(16)30118-7

[30] Z.-T. Wen, G. G. Gundersen, and J. Heittokangas, Dual exponential polynomials and
linear differential equations, J. Differential Equations 264 (2018), no. 1, 98–114. https:

//doi.org/10.1016/j.jde.2017.09.003

[31] X. Wu, J. Long, J. Heittokangas, and K. Qiu, Second-order complex linear differen-
tial equations with special functions or extremal functions as coefficients, Electron. J.

Differential Equations 2015 (2015), No. 143, 15 pp.
[32] X. B. Wu and P. C. Wu, Growth of solutions to the equation f ′′+Af ′+Bf = 0, where

A is a solution to a second-order linear differential equation, Acta Math. Sci. Ser. A

(Chin. Ed.) 33 (2013), no. 1, 46–52.
[33] P. Wu and J. Zhu, On the growth of solutions to the complex differential equation

f ′′ + Af ′ + Bf = 0, Sci. China Math. 54 (2011), no. 5, 939–947. https://doi.org/10.

1007/s11425-010-4153-x

[34] C.-C. Yang and H.-X. Yi, Uniqueness theory of meromorphic functions, Mathematics

and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003. https:

//doi.org/10.1007/978-94-017-3626-8

[35] L. Yang and G. H. Zhang, Distribution of Borel directions of entire functions, Acta

Math. Sinica 19 (1976), no. 3, 157–168.

[36] G. H. Zhang, Theory of Entire and Meromorphic Functions-Deficient Values, Asymp-
totic Values and Singular Directions, Springer-Verlag, Berlin, 1993.

[37] G. Zhang and J. Wang, The infinite growth of solutions of complex differential equations
of which coefficient with dynamical property, Taiwanese J. Math. 18 (2014), no. 4, 1063–

1069. https://doi.org/10.11650/tjm.18.2014.3902

https://doi.org/10.1006/jmaa.1997.5247
https://doi.org/10.1006/jmaa.1997.5247
https://doi.org/10.1515/9783110863147
https://doi.org/10.1515/9783110863147
https://doi.org/10.1090/S0002-9939-00-05350-8
https://doi.org/10.1090/S0002-9939-00-05350-8
https://doi.org/10.2996/kmj/1138037272
https://doi.org/10.2298/fil1801275l
https://doi.org/10.2298/fil1801275l
https://doi.org/10.1007/s10114-012-0648-4
https://doi.org/10.1093/imrn/rnu245
https://doi.org/10.1016/S0252-9602(16)30118-7
https://doi.org/10.1016/j.jde.2017.09.003
https://doi.org/10.1016/j.jde.2017.09.003
https://doi.org/10.1007/s11425-010-4153-x
https://doi.org/10.1007/s11425-010-4153-x
https://doi.org/10.1007/978-94-017-3626-8
https://doi.org/10.1007/978-94-017-3626-8
https://doi.org/10.11650/tjm.18.2014.3902


INFINITE GROWTH, COMPLEX DIFFERENTIAL EQUATIONS 431

[38] J.-H. Zheng, On multiply-connected Fatou components in iteration of meromorphic func-

tions, J. Math. Anal. Appl. 313 (2006), no. 1, 24–37. https://doi.org/10.1016/j.jmaa.

2005.05.038

Guowei Zhang

School of Mathematics and Statistics

Anyang Normal University
Anyang 455000, Henan, P. R. China

Email address: herrzgw@foxmail.com

https://doi.org/10.1016/j.jmaa.2005.05.038
https://doi.org/10.1016/j.jmaa.2005.05.038

