• Title/Summary/Keyword: different color method

Search Result 1,008, Processing Time 0.029 seconds

A Novel Color Breakup Measurement Technique for Field Sequential Display

  • Lai, Yueh-Yi;Liao, Wen-Hung;Mo, Chi-Neng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1069-1072
    • /
    • 2009
  • Field sequential display has some advantages but color breakup (CBU) is the significant problem. Many researches had introduced several methods to reduce CBU phenomenon, however there are no reliable methods to measure the degree of CBU. In this report, a novel CBU measurement technique which was based on the image processing method and subjective analysis results had proposed to evaluate the degree of CBU. Color Breakup Index (CBI) was presented to be a useful index to recognize the CBU phenomenon in the different field sequential technique displays.

  • PDF

Color Interpolation with Hard-Decision based on Local Cross-Channel Correlation (채널 간 국부 상관도에 기반 한 에지 적응적 컬러 보간)

  • Oh, Hyun-Mook;Kang, Moon-Gi
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.847-848
    • /
    • 2008
  • In this paper, we proposed a novel edge-oriented color interpolation method which determine the edge direction with hard-decision based on high correlation between different channels. The novel edge direction estimation criterion improves the color interpolation method especially on edges by considering high frequencies between channels.

  • PDF

Color Modification Detection Using Normalization and Weighted Sum of Color Components (컬러 성분의 정규화와 가중치 합을 이용한 컬러 조작 검출)

  • Shin, Hyun Jun;Jeon, Jong Ju;Eom, Il Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.12
    • /
    • pp.111-119
    • /
    • 2016
  • Most commercial digital cameras acquire the colors of an image through the color filter array, and interpolate missing pixels of the image. Because of this fact, original pixels and interpolated pixels have different statistical characteristics. If colors of an image are modified, the color filter array pattern that consists of RGB channels is changed. Using this pattern change, a color forgery detection method were presented. The conventional method uses the number of pixels that exceeds the maximum or minimum value of pre-defined block by only exploiting green component. However, this algorithm cannot remove the flat area which is occurred when color is changed. And the conventional method has demerit that cannot detect the forged image with rare green pixels. In this paper, we propose an enhanced color forgery detection algorithm using the normalization and weighted sum of the color components. Our method can reduce the detection error by using all color components and removing flat area. Through simulations, we observe that our proposed method shows better detection performance compared to the conventional method.

The effect of repeated firings on the color change of dental ceramics using different glazing methods

  • Yilmaz, Kerem;Gonuldas, Fehmi;Ozturk, Caner
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.6
    • /
    • pp.427-433
    • /
    • 2014
  • PURPOSE. Surface color is one of the main criteria to obtain an ideal esthetic. Many factors such as the type of the material, surface specifications, number of firings, firing temperature and thickness of the porcelain are all important to provide an unchanged surface color in dental ceramics. The aim of this study was to evaluate the color changes in dental ceramics according to the material type and glazing methods, during the multiple firings. MATERIALS AND METHODS. Three different types of dental ceramics (IPS Classical metal ceramic, Empress Esthetic and Empress 2 ceramics) were used in the study. Porcelains were evaluated under five main groups according to glaze and natural glaze methods. Color changes (${\Delta}E$) and changes in color parameters (${\Delta}L$, ${\Delta}a$, ${\Delta}b$) were determined using colorimeter during the control, the first, third, fifth, and seventh firings. The statistical analysis of the results was performed using ANOVA and Tukey test. RESULTS. The color changes which occurred upon material-method-firing interaction were statistically significant (P<.05). ${\Delta}E$, ${\Delta}L$, ${\Delta}a$ and ${\Delta}b$ values also demonstrated a negative trend. The MC-G group was less affected in terms of color changes compared to other groups. In all-ceramic specimens, the surface color was significantly affected by multiple firings. CONCLUSION. Firing detrimentally affected the structure of the porcelain surface and hence caused fading of the color and prominence of yellow and red characters. Compressible all-ceramics were remarkably affected by repeated firings due to their crystalline structure.

Multiple Human Recognition for Networked Camera based Interactive Control in IoT Space

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.1
    • /
    • pp.39-45
    • /
    • 2019
  • We propose an active color model based method for tracking motions of multiple human using a networked multiple-camera system in IoT space as a human-robot coexistent system. An IoT space is a space where many intelligent devices, such as computers and sensors(color CCD cameras for example), are distributed. Human beings can be a part of IoT space as well. One of the main goals of IoT space is to assist humans and to do different services for them. In order to be capable of doing that, IoT space must be able to do different human related tasks. One of them is to identify and track multiple objects seamlessly. In the environment where many camera modules are distributed on network, it is important to identify object in order to track it, because different cameras may be needed as object moves throughout the space and IoT space should determine the appropriate one. This paper describes appearance based unknown object tracking with the distributed vision system in IoT space. First, we discuss how object color information is obtained and how the color appearance based model is constructed from this data. Then, we discuss the global color model based on the local color information. The process of learning within global model and the experimental results are also presented.

Development & Reliability Verification of Ultra-high Color Rendering White Artificial Sunlight LED Device using Deep Blue LED Light Source and Phosphor (Deep Blue LED 광원과 형광체를 이용한 초고연색 백색 인공태양광 LED 소자의 개발)

  • Jong-Uk An;Tae-Kyu Kwon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.3
    • /
    • pp.59-68
    • /
    • 2023
  • Currently, yellow phosphor of Y3Al5O12:Ce3+ (YAG:Ce) fluorescent material is applied to a 450~480nm blue LED light source to implement a white LED device and it has a simple structure, can obtain sufficient luminance, and is economical. However, in this method, in terms of spectrum analysis, it is difficult to mass-produce white LEDs having the same color coordinates due to color separation cause by the wide wavelength gap between blue and yellow band. There is a disadvantage that it is difficult to control optical properties such as color stability and color rendering. In addition, this method does not emit purple light in the range of 380 to 420nm, so it is white without purple color that can not implement the spectrum of the entire visible light spectrum as like sunlight. Because of this, it is difficult to implement a color rendering index(CRI) of 90 or higher, and natural light characteristics such as sunlight can not be expected. For this, need for a method of implementing sunlight with one LED by using a method of combining phosphors with one light source, rather than a method of combining red, blue, and yellow LEDs. Using this method, the characteristics of an artificial sunlight LED device with a spectrum similar to that of sunlight were demonstrated by implementing LED devices of various color temperatures with high color rendering by injecting phosphors into a 405nm deep blue LED light source. In order to find the spectrum closest to sunlight, different combinations of phosphors were repeatedly fabricated and tested. In addition, reliability and mass productivity were verified through temperature and humidity tests and ink penetration tests.

Effect of the Amount of Pigment on the Color of Silk Dyed with Fermented Indigo Powder Dye (발효쪽 분말염료로 염색한 견직물의 색소 함량이 직물의 색상에 미치는 영향)

  • Yoo, Wansong;Ahn, Cheunsoon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.42 no.2
    • /
    • pp.342-359
    • /
    • 2018
  • This research investigated the relationship between the amount of fixed pigment and the color of silk dyed with three types of fermented indigo powder dye under different temperatures and pH, by reduction or nonreduction method. Amount of fixed pigment was analyzed using the Ultimate 3000 HPLC-DAD instrument and the color of dyed silk was measured using the X-rite spectrocolorimeter. All silk samples dyed by reduction method showed PB color. The amount of indigotin fixation was dependent on the dyeing temperature and pH regardless of the indigotin composition in the dye. Indirubin was less dependent upon the dyeing condition in the reduction dyeing and its fixation was minimum level. Dyeing conditions which can maximize the indigotin fixation were $50^{\circ}C/pH$ 11 and $70^{\circ}C/pH$ 7 conditions in reduction dyeing. Color of silk showed more redness ($a^*$) thus higher PB color when the indigotin fixation was low and indirubin fixation was relatively high. Indirubin fixation was very low with slightly better fixation by nonreduction method. More reddish color was obtained by nonreduction dyeing, and by more alkaline dyebath.

Color Detection and Psychology Analysis Using Fuzzy Reasoning Method (퍼지 추론 기법을 이용한 색상 추출과 심리 분석)

  • Cho, Jae-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.3
    • /
    • pp.381-386
    • /
    • 2015
  • In recent, many researches have been studying sensitivity and psychology of human being on color and the necessity of psychology therapy by color. Among them, a picture of children can be a tool to represent their emotion. Information of colors and direction on a child's picture often represent his internal psychological states unconsciously and is different from the brightness of a color. In this paper, we propose a method to extract domain colors by color classification and subdivision the classes of brightness using fuzzy inference. In addition, it is shown that our method is used for analysing the psychology status of children through their pictures.

Image Search Using Interpolated Color Histograms (히스토그램 보간에 의한 영상 검색)

  • Lee, Hyo-Jong
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.701-706
    • /
    • 2002
  • A set of color features has been efficiently used to measure the similarity of given images. However, the size of the color features is too large to implement an indexing scheme effectively. In this paper a new method is proposed to retrieve similar images using an interpolated color histogram. The idea is similar to the already reported methods that use the distributions of color histograms. The new method is different in that simplified color histograms decide the similarity between a query image and target images. In order to represent the distribution of the color histograms, the best order of interpolated polynomial has been simulated. After a histogram distribution is represented in a polynomial form, only a few number of polynomial coefficients are indexed and stored in a database as a color descriptor. The new method has been applied to real images and achieved satisfactory results.

Mobile Robot Localization Based on Hexagon Distributed Repeated Color Patches in Large Indoor Area (넓은 실내 공간에서 반복적인 칼라패치의 6각형 배열에 의한 이동로봇의 위치계산)

  • Chen, Hong-Xin;Wang, Shi;Han, Hoo-Sek;Kim, Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.445-450
    • /
    • 2009
  • This paper presents a new mobile robot localization method for indoor robot navigation. The method uses hexagon distributed color-coded patches on the ceiling and a camera is installed on the robot facing the ceiling to recognize these patches. The proposed "cell-coded map", with the use of only seven different kinds of color-coded landmarks distributed in hexagonal way, helps reduce the complexity of the landmark structure and the error of landmark recognition. This technique is applicable for navigation in an unlimited size of indoor space. The structure of the landmarks and the recognition method are introduced. And 2 rigid rules are also used to ensure the correctness of the recognition. Experimental results prove that the method is useful.