• Title/Summary/Keyword: dietary probiotics

Search Result 177, Processing Time 0.031 seconds

Effects of Complex Probiotics on Productivity Index, Fatty Acid Composition and Immune Response in Broilers (복합 생균제가 육계의 생산성, 육질, 지방산 조성 및 면역 반응에 미치는 영향)

  • Siddiqui, Sharif Hasan;Hwang, Chae Yeon;Choe, Ho-Sung;Shim, Kwan-Seob
    • Korean Journal of Organic Agriculture
    • /
    • v.28 no.3
    • /
    • pp.431-447
    • /
    • 2020
  • This study was conducted to investigate the efficacy of mixed probiotic on the immunity, productivity index and mortality rate in the broiler. Total of 120 one-day-old Ross broilers chicks were randomly assigned into two treatments (control dietary group and probiotic-treated group) with three replications of each treatment. The probiotic group broiler had a lower mortality rate than control during the experimental period. The productivity index in the probiotic group increased significantly than the control group. The weight of the bursa of fabricius was high in the probiotic-treated group than the control group. Activated the immunity level after fed the probiotic mixed diet compared to the control group. Furthermore, the probiotic diet significantly decreased the saturated fatty the control group. Whereas the probiotic mixed diet increased the unsaturated fatty acid than the control group. Afterward, the diet including probiotic induced positive impact on broilers immunity level. This indicates that a probiotic mixed diet could be protecting the intestine from the invasion of a pathogenic organism. It would be beneficial to the poultry industries by decrease the broiler mortality rate with elevated the immunity.

Protective Effects of Probiotic Lactobacillus rhamnosus IMC501 in Mice Treated with PhIP

  • Dominici, Luca;Villarini, Milena;Trotta, Francesca;Federici, Ermanno;Cenci, Giovanni;Moretti, Massimo
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.3
    • /
    • pp.371-378
    • /
    • 2014
  • The aim of the present study was to investigate the antigenotoxic properties of the probiotic Lactobacillus rhamnosus IMC501; DNA damage was induced by one representative food mutagen, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP). Mice were treated orally with suspensions of lactobacilli for 10 days before administration of food mutagen. During the treatment, the abundance of lactobacilli in feces, as assessed by qPCR analysis, increased, whereas ${\beta}$-glucuronidase and N-acetyl-${\beta}$-glucosaminidase activities decreased. The extent of DNA damage was measured in colon and liver cells by comet assay. In colonocytes, diet supplementation with IMC501 resulted in a significant inhibition of DNA damage induced by PhIP. The results obtained in this in vitro study suggest that Lactobacillus rhamnosus IMC501 used as a dietary supplement can provide a useful integration of antimutagen food components of the normal diet, which are generally lower than the protective level.

Advanced estimation and mitigation strategies: a cumulative approach to enteric methane abatement from ruminants

  • Islam, Mahfuzul;Lee, Sang-Suk
    • Journal of Animal Science and Technology
    • /
    • v.61 no.3
    • /
    • pp.122-137
    • /
    • 2019
  • Methane, one of the important greenhouse gas, has a higher global warming potential than that of carbon dioxide. Agriculture, especially livestock, is considered as the biggest sector in producing anthropogenic methane. Among livestock, ruminants are the highest emitters of enteric methane. Methanogenesis, a continuous process in the rumen, carried out by archaea either with a hydrogenotrophic pathway that converts hydrogen and carbon dioxide to methane or with methylotrophic pathway, which the substrate for methanogenesis is methyl groups. For accurate estimation of methane from ruminants, three methods have been successfully used in various experiments under different environmental conditions such as respiration chamber, sulfur hexafluoride tracer technique, and the automated head-chamber or GreenFeed system. Methane production and emission from ruminants are increasing day by day with an increase of ruminants which help to meet up the nutrient demands of the increasing human population throughout the world. Several mitigation strategies have been taken separately for methane abatement from ruminant productions such as animal intervention, diet selection, dietary feed additives, probiotics, defaunation, supplementation of fats, oils, organic acids, plant secondary metabolites, etc. However, sustainable mitigation strategies are not established yet. A cumulative approach of accurate enteric methane measurement and existing mitigation strategies with more focusing on the biological reduction of methane emission by direct-fed microbials could be the sustainable methane mitigation approaches.

Lactobacillus plantarum G72 Showing Production of Folate and Short-chain Fatty Acids

  • Jang, Hye Ji;Lee, Na-Kyoung;Paik, Hyun-Dog
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.1
    • /
    • pp.18-23
    • /
    • 2021
  • The aim of this study was to determine the production of folate, short chain fatty acids (SCFAs), and antimicrobial activity exhibited by Lactobacillus plantarum G72 for potential dietary application in pregnant women. L. plantarum G72 has been reported to possess characteristic activities and functionality including β-galactosidase activity and antioxidant activities. L. plantarum G72 showed antibacterial activity against pathogenic bacteria (Listeria monocytogenes ATCC 15313, Salmonella typhimurium P99, Escherichia coli ATCC 25922, and Staphylococcus aureus KCCM 11335) using a modified method, and formation of the largest inhibition zone was observed against S. aureus KCCM 11335 (12.0-17.0 mm). The adherence of four food-borne pathogenic bacteria to HT-29 cells was inhibited by L. plantarum G72 (0.13 to 0.92 log CFU/ml). The most considerable inhibition of adherence to HT-29 cells was observed by using L. plantarum G72 against S. typhimurim P99. Additionally, folate production by L. plantarum G72 was 50.1 ng/ml, and L. plantarum G72 produced relatively more lactic acid (11,176.73 mg/kg) than acetic, propionic, or butyric acids. Therefore, the results of this study suggest that L. plantarum G72 may serve as a multifunctional food additive in the health industry.

Understanding intestinal health in nursery pigs and the relevant nutritional strategies

  • Kim, Sung Woo;Duarte, Marcos E.
    • Animal Bioscience
    • /
    • v.34 no.3_spc
    • /
    • pp.338-344
    • /
    • 2021
  • In the modern pig production, pigs are weaned at early age with immature intestine. Dietary and environmental factors challenge the intestine, specifically the jejunum, causing inflammation and oxidative stress followed by destruction of epithelial barrier and villus structures in the jejunum. Crypt cell proliferation increases to repair damages in the jejunum. Challenges to maintain the intestinal health have been shown to be related to changes in the profile of mucosa-associated microbiota in the jejunum of nursery pigs. All these processes can be quantified as biomarkers to determine status of intestinal health related to growth potential of nursery pigs. Nursery pigs with impaired intestinal health show reduced ability of nutrient digestion and thus reduced growth. A tremendous amount of research effort has been made to determine nutritional strategies to maintain or improve intestinal health and microbiota in nursery pigs. A large number of feed additives have been evaluated for their effectiveness on improving intestinal health and balancing intestinal microbiota in nursery pigs. Selected prebiotics, probiotics, postbiotics, and other bioactive compounds can be used in feeds to handle issues with intestinal health. Selection of these feed additives should aim modulating biomarkers indicating intestinal health. This review aims to define intestinal health and introduce examples of nutritional approaches to handle intestinal health in nursery pigs.

Increased Amino Acid Absorption Mediated by Lacticaseibacillus rhamnosus IDCC 3201 in High-Protein Diet-Fed Mice

  • Hayoung Kim;Jungyeon Kim;Minjee Lee;Hyeon Ji Jeon;Jin Seok Moon;Young Hoon Jung;Jungwoo Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.511-518
    • /
    • 2023
  • The use of dietary protein products has increased with interests in health promotion, and demand for sports supplements. Among various protein sources, milk protein is one of the most widely employed, given its economic and nutritional advantages. However, recent studies have revealed that milk protein undergoes fecal excretion without complete hydrolysis in the intestines. To increase protein digestibility, heating and drying were implemented; however, these methods reduce protein quality by causing denaturation, aggregation, and chemical modification of amino acids. In the present study, we observed that Lacticaseibacillus rhamnosus IDCC 3201 actively secretes proteases that hydrolyze milk proteins. Furthermore, we showed that co-administration of milk proteins and L. rhamnosus IDCC 3201 increased the digestibility and plasma concentrations of amino acids in a high-protein diet mouse model. Thus, food supplementation of L. rhamnosus IDCC 3201 can be an alternative strategy to increase the digestibility of proteins.

Effects of Dietary Supplementation of Mixed Probiotics on Production Performance and Intestinal Environment in Broiler Chicken (혼합 생균제의 사료 내 첨가 급여가 육계의 생산성과 장내 환경에 미치는 영향)

  • Oh, Seong Taek;Kang, Chang Won;Kim, Eun Jib
    • Korean Journal of Poultry Science
    • /
    • v.41 no.2
    • /
    • pp.143-149
    • /
    • 2014
  • This study was conducted to investigate the effects of dietary supplementation of the mixture of probiotics (MP) on growth performance, size of small intestine, cecal microflora and ammonia concentrations in broiler chicks. A total of 700, one-day-old male broiler chicks were randomly allotted to four treatments with seven replications having 25 birds per pen. The birds were fed one of the four experimental diets; containing no antibiotics nor MP (negative control, NC), containing antibiotics without MP(positive control, PC), negative control with MP 0.1% and negative control with MP 0.2% for 5 weeks. During overall experiment, birds in PC and MP treatments had higher final BW and daily BW gains than birds in NC treatments; however, the significance was not identified. The feed conversion ratio of the chicks fed the diet containing MP was significantly improved as compared to those fed the NC diets. The weights of jejunum were increased by the MP (p<0.05), but weights of duodenum, ileum and length of small intestine were similar among the groups. Birds in PC treatment showed lower populations of total microbes and lactic acid bacteria than other groups (p<0.05), cecal ammonia concentrations of the chicks fed the diet containing MP were significantly decreased as compared to those of NC and PC (p<0.01). In conclusion, MP added to the broiler diets improved the feed conversion rate and reduced cecal ammonia concentration.

Dietary Administration of Probiotics, Bacillus sp. IS-2, Enhance the Innate Immune Response and Disease Resistance of Paralichthys olivaceus against Streptococcus iniae (Probiotics를 양식넙치에 투여시 Streptococcus iniae에 대한 면역반응 및 병저항성)

  • Jang, Ik-Soo;Kim, Dong-Hwi;Heo, Moon-Soo
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.172-178
    • /
    • 2013
  • The strains were added to the feed in the concentration of $10^3$, $10^5$, and $10^7$ CFU/kg and 2% of fishes were given the feed twice a day (8 AM and 5 PM) for 12 weeks. In result of the nonspecific immune response study to examine Respiratory burst activity, Lysozyme activity and Phagocytosis activity every two weeks until the end of the study, all test samples showed greater activities than control samples and improved immune activity with Bacillus sp. IS-2. The mortality test performed by artificial infection using Streptococcus iniae, a pathogenic bacterium, after the completion of this study also showed over 55% greater survival rate in all test samples. In result of performing PCR using the universal primer to verify that the probiotic stays in the intestines of the fishes, all test samples showed PCR product of 1,465 bp. Based on the above findings, it was concluded that Bacillus sp. IS-2 in the feed improved farmed flatfish's immune system and resistance against diseases as the probiotics. Also, the physiological indicators discovered by this study would be useful for identifying the mechanisms of probiotics.

Effects of Dietary Probiotic on Performance, Noxious Gas Emission and Microflora Population on the Cecum in Broiler (복합 생균제 첨가가 육계 생산성, 유해가스 발생량 및 맹장내 균총에 미치는 영향)

  • Ko, Y.D.;Sin, J.H.;Kim, S.C.;Kim, Y.M.;Park, K.D.;Kim, J.H.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.4
    • /
    • pp.559-568
    • /
    • 2003
  • This study was carried out to investigate the effect of probiotics on the performance, nutrients digestibility, noxious gas emission and microflora population on the cecum of broilers. A total of 120 broilers, consisted of 4 treatments X 3 replicates X 10 broilers per replicates, were fed the experimental diets containing 0, 0.1, 0.3 and 0.5% probiotics for 5 weeks. Broilers fed the diets containing 0.1 and 0.3% probiotic had higher (p<0.05) body weight gain and feed conversion than those of the others from the 3rd to 4th week. Broilers fed 0.3% probiotic had higher (p<0.05) body weight gain and feed conversion than those of the other levels from the 5th to 6th week. Broilers fed the diets containing 0.1% and 0.3% probiotic had higher (p<0.05) body weight gain and feed conversion than those of the others from the 2nd to 6th week. Dry matter digestibility was significantly (p<0.05) improved with 0.3% probiotic. Emission of ammonia and sulfate hydrogen gas was significantly (p<0.05) decreased at 6th week. However, there was no (p<0.05) difference at the levels of 0, 0.1, 0.3 and 0.5% at the 4th weeks. There was an increase in the lactobacillus sp, but there was a decrease in the microflora population of coliforms in the cecum of broiler with 0.1% and 0.3% probiotics. These results indicated that the compound probiotics of 0.1${\sim}$0.3% were effective in the body weight gain, feed conversion, nutrients digestibility, noxious gas emission and microflora population on the cecum in broilers.

Effects of Complex Probiotic Supplementation on Growth Performance, Nutrient Digestibility, Blood Metabolites, Noxious Gas and Fecal Microflora in Weaning Pigs (사료 내 복합생균제 첨가가 이유자돈의 사양성적, 영양소 소화율, 혈액성상, 분내 유해가스 및 분 중 미생물에 미치는 영향)

  • Kim, Dong-Woo;Choi, Yo-Han;Kim, Jo-Eun;Cho, Eun Seok;Jung, Hyun-Jung;Oh, Seung-Min;Kim, Jeong-Dae;Kim, Jin-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.266-273
    • /
    • 2020
  • This study was undertaken to determine the effects of diet supplementation with complex probiotics (CPB), on growth performance, nutrient digestibility, blood metabolites, noxious gas, and fecal microflora in weaning pigs. On the basis of body weight, a total of 234 weaned pigs (Landrace×Yorkshire×Duroc, 6.14±0.78kg) were randomly allotted to 3 treatments and 6 replicates (13 pigs per pen). The experimental diets were fed in a meal form for 28 days (days 0-14, PhaseI, and days 15-28, PhaseII). The dietary treatment groups were as follows: T1 (basal diet), T2 (T1+0.13% CPB) and T3 (T1+0.25% CPB). The CPB supplement contained Bacillus subtilis 1.0×106 CFU/g, Enterococcus faecium 1.0×106 CFU/g, Saccharomyces cerevisiae 1.0×106 CFU/g, Bacillus licheniformis 3.0×108 CFU/g, and Bacillus polyfermenticus 3.0×108 CFU/g. Pigs fed the T3 diet showed an increase (p<0.05) in the overall average daily gain and average daily feed intake, increased (p<0.05) crude protein digestibility in PhaseI, and greater (p<0.05) dry matter and gross energy digestibility in PhaseII. Supplementation of CPB had no effect on the blood profile. Furthermore, pigs fed the T3 diet had lower (p<0.05) NH3 emission and overall count of fecal Clostridium spp. In conclusion, we believe that CPB supplementation has a beneficial effect on growth performance, nutrient digestibility, noxious gas, and fecal microflora in weaning pigs.