• 제목/요약/키워드: diesel engine systems

검색결과 326건 처리시간 0.022초

디젤 엔진에서 금속 폼을 적용한 SCR 촉매의 특성 분석 (Characteristic Analysis of a SCR System using a Metal Foam in Diesel Engines)

  • 김용래;최교남
    • 한국분무공학회지
    • /
    • 제18권4호
    • /
    • pp.196-201
    • /
    • 2013
  • SCR(Selective Catalytic Reduction) is a major after-treatment solution to reduce NOx emission in recent diesel engines. In this study, a metal foam is applied as an alternative SCR substrate and tested in a commercial diesel engine to compared with a conventional ceramic SCR system. Basic engine test from ND-13 mode shows that a metal foam catalyst has lower NOx conversion efficiency than a ceramic catalyst especially over $350^{\circ}C$. A metal foam catalyst has characteristics of high exhaust gas pressure before a SCR catalyst and high heat transfer rate due to its material and structure. NOx conversion efficiency of a metal foam catalyst shows an increasing tendency along with the increase of exhaust gas temperature by $500^{\circ}C$. The effect of urea injection quantity variation is also remarkable only at high exhaust gas temperature.

소형 경유 운행차의 매연여과장치 재생용 촉매연소기 개발에 관한 연구 (Development of a Catalytic Combustor for DPF Regeneration of In-use Light Duty Diesel Vehicles)

  • 김홍석;최현하;조규백;정용일;조성호;박종수
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.168-175
    • /
    • 2008
  • In-use light duty diesel vehicles are considered as one of major sources of particulate emissions in many cities, and the start of the retrofit program for the light duty diesel vehicles is expected in near future in Korea. One of the problems of the retrofit of the light duty diesel vehicles is that the exhaust gas temperature is too low to apply passive regeneration DPF systems. This study introduces a catalytic combustor as a new active DPF regeneration technology. This study shows the principle and characteristics of DPF regeneration by the catalytic combustor and suggests it's proper control method for better regeneration.

디젤 분사방식에 따른 이종연료 엔진의 성능 및 배기 분석 (Analysis on Performance and Emission with Different Diesel Injection Methods in a Dual-Fuel Engine)

  • 박현욱;이준순;오승묵;김창업;이용규;장형준
    • 한국분무공학회지
    • /
    • 제27권2호
    • /
    • pp.101-108
    • /
    • 2022
  • Performance and emissions with different diesel injection methods were analyzed in a natural gas-diesel, dual-fuel engine under low-load conditions. Natural gas was supplied to intake port during the intake stoke to form a natural gas-air premixed mixture for all methods. Diesel was injected directly into the cylinder during the compression stroke in three ways: early injections, late injections, and a combination of early and late injections. The early injections had the highest thermal efficiency among the three methods owing to its highest combustion efficiency. The wide dispersion of diesel before the combustion initiation also allowed superior emissions characteristics.

직접 디젤 연료분사계의 분사 특성과 기관 성능 개선에 관한 연구 (Injection Feature and Engine Performance Improvement of the Direct Diesel Fuel Injection System)

  • 윤천한;김경훈
    • 한국분무공학회지
    • /
    • 제7권1호
    • /
    • pp.1-6
    • /
    • 2002
  • This study has focused on using fuel injections as variables for measuring performance and reducing exhaust gas in turbo-charger diesel engine. In experiments, we changed nozzle hole diameter, diameter of an injection pipe, and injection timing as variable. The results show that torque. fuel consumption and smoke are reduced as nozzle hole diameter decreases, while NOx increases. When the diameter of injector is reduced, torque, fuel consumption and smoke are deteriorated, but NOx is decreased. In addition, when the time for injection is advanced. torque, fuel consumption and smoke are improved, but the density of NOx is increased.

  • PDF

디젤 엔진 저온 시동 시스템 최적화를 위한 엔진 시동 과정의 동적 모델링 및 시뮬레이션 (Dynamic Modelling and Simulation of Engine Starting Process for Optimization of Diesel Engine Cold Starting System)

  • 박정규;배근식;유천
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.32-39
    • /
    • 2000
  • To optimize the cold start process of a 4-stroke, 8 cylinder Diesel engine, a dynamic simulation model from cranking to idle speed is developed. Physically-based first order starter motor dynamics are used to model the performance of starting process which is very complex. These equations are solved using numerical schemes(Petzold-Gear BDF method) to describe the starting process of diesel engine and to study the effects of starting parameters. The validity of this model is examined by start test. This model can be served as a tool for computer aided control systems design to improve cold improve cold start performance.

  • PDF

이유체 노즐 미립화 특성이 요소 열분해에 미치는 영향 (Effect of Atomization Characteristics of Twin Fluid Nozzle on Urea Pyrolysis)

  • 구건우;정경열;윤현진;석지권;홍정구
    • 한국분무공학회지
    • /
    • 제20권3호
    • /
    • pp.162-167
    • /
    • 2015
  • Recently, there has been rising interest in applying urea-SCR systems to large marine diesel engines because the International Maritime Organization (IMO) has decided to enforce NOx reduction regulations. Generally, in the case of urea-SCR of the marine diesel engine, a type of twin fluid atomizer has been using for injection of the urea solution. This study conducted to investigate an effect of the atomization of external-mixing twin fluid nozzle on the conversion efficiency of reductant. The lab-scaled experiment device was installed to mimic the urea-SCR system of the marine diesel engine for this study. In a low temperature inflow gas condition which is similar with the exhaust temperature of large marine diesel engine, this study found that the conversion efficiency of reductant of when relative big size urea solution droplets are injected into exhaust gas stream can be larger than that of when small size urea solution droplets are injected. According to results of this study, the reason was associated with decrease of reaction rate constant caused from temperature drop of inflow gas by assist air of twin fluid atomizer.

동력경운기(動力耕耘機) 기관(機関)의 효율적(效率的) 이용(利用)에 관한 연구(硏究) (A Study on Efficient Utilization of Power-Tiller Engines)

  • 류관희;박금주
    • Journal of Biosystems Engineering
    • /
    • 제9권2호
    • /
    • pp.1-7
    • /
    • 1984
  • The engines mounted on power-tillers are used as power source in various kinds of works such as plowing, harrowing, transporting, spraying, water pumping and threshing, etc. But the engines have not been used effectively from a standpoint of fuel consumption because of lack of proper power transmission system and lack of understanding of fuel consumption characteristics of the engines. Therefore, this study was attempted to establish proper power transmission system between the power-tiller engines and various implements. In order to accomplish the above objective, firstly, power requirement and pulley sizes for various implements, which are driven by the power-tiller engines, were investigated to find out whether the power transmission system is proper. Secondly, partload variable engine-speed test was conducted for 3 different sizes of diesel engines to measure to specific fuel consumption. Thirdly, the present power transmission systems were analyzed in terms of specific fuel consumption, and proper power transmission systems were suggested for various implements. The results of this study are summarized as follows: 1. Power requirement for each fixed-type implement of power-tiller varied from 1.5 ps to 11 ps according to its type and operating conditions, but generally in the range of 2.5 ps to 7 ps. 2. Each power tiller and implement were equipped with only one size of pully with few exeptions. With the present power transmission systems, the engines can't be utilized effectively in terms of fuel economy. The pulley size of engine or implement should be diversified to provide the optimum engine speed for different implements. 3. For a diesel eninge with the rated power output of 6 ps, the optimum engine speed to minimize specific fuel consumption was 2200 rpm for the power reguirement in the range of 6 ps or more, 1700 rpm in the range of 4 to 6 ps, and 1200 rpm in the range of 4 ps or less. 4. For a diesel engine with the rated power output of 8 ps, the optimum engine speed was 2200 rpm for the power requirement in the range of 7 ps or more, 1700 rpm in the range of 4.8 to 7 ps, and 1200 rpm in the range of 4.8 ps or less. 5. For a diesel engine with the rated power output of 10 ps, the optimum engine speed was 2200 rpm for the power requirement in the range of 8.4 ps or more, 1700 rpm in the range of 5.4 ps to 8.4 ps, and 1200 rpm in thr range of 5.4 ps or less. 6. Provided the existing implements are dirven by 8 ps diesel engines, the optimum size of engine pulley should be larger than 120mm for the works of requiring less than 4 ps and 90-110mm for the works requiring 4.5-6.5 ps in order to minimize fuel consumption.

  • PDF

고압 디젤 인젝터 노즐 홀 수가 연료 분무 및 배기 특성에 미치는 영향 (Effect of Nozzle Hole Number on Fuel Spray and Emission Characteristics of High Pressure Diesel Injector)

  • 전문수
    • 한국분무공학회지
    • /
    • 제17권4호
    • /
    • pp.210-215
    • /
    • 2012
  • This paper This paper presents effect of nozzle hole number on spray characteristics and engine performance. Experiments were conducted to measure spray penetration and SMD distributions using a spray visualization system and PDPA (phase Doppler particle analyzer) system. In addition, engine performance and emission characteristics were measured using a single cylinder engine and emssion measurement systems. Results showed that 8-hole-injector exhibits improved spray performances. Furthermore, soot emission was decreased with 8-hole-injector, compared to that of 6-hole-injector.

하이브리드 디젤엔진용 EGR 쿨러의 열교환 효율 연구 (A Study on Heat Exchange Efficiency of EGR Cooler for Diesel Hybrid)

  • 이준;문전일;김연희
    • 한국자동차공학회논문집
    • /
    • 제17권2호
    • /
    • pp.159-164
    • /
    • 2009
  • Cooled EGR system is an effective method for the reduction of $NO_x$ emission and PM emission from a diesel engine. Proper choice of wavy cooling fins and gas tubes is a key factor of cooled EGR system. As a part of solutions for energy crisis and environmental problems, hybrid vehicles mounted with diesel engines are under development globally. This study investigates the cooled EGR systems for hybrid diesel engine with the specifications of both optimized wavy cooling fins and improved shape of structure to verify the heat exchange efficiency, outlet temperature and gas pressure drop of cooler by means of numerical analyses and rig performance tests. The output of this study will be applied to a 2.0L hybrid diesel engine which is being developed for domestic and overseas market.

PREDICTION OF EMISSIONS USING COMBUSTION PARAMETERS IN A DIESEL ENGINE FITTED WITH CERAMIC FOAM DIESEL PARTICULATE FILTER THROUGH ARTIFICIAL NEURAL NETWORK TECHNIQUES

  • BOSE N.;RAGHAVAN I.
    • International Journal of Automotive Technology
    • /
    • 제6권2호
    • /
    • pp.95-105
    • /
    • 2005
  • Diesel engines have low specific fuel consumption, but high particulate emissions, mainly soot. Diesel soot is suspected to have significant effects on the health of living beings and might also affect global warming. Hence stringent measures have been put in place in a number of countries and will be even stronger in the near future. Diesel engines require either advanced integrated exhaust after treatment systems or modified engine models to meet the statutory norms. Experimental analysis to study the emission characteristics is a time consuming affair. In such situations, the real picture of engine control can be obtained by the modeling of trend prediction. In this article, an effort has been made to predict emissions smoke and NO$_{x}$ using cylinder combustion derived parameters and diesel particulate filter data, with artificial neural network techniques in MATLAB environment. The model is based on three layer neural network with a back propagation learning algorithm. The training and test data of emissions were collected from experimental set up in the laboratory for different loads. The network is trained to predict the values of emission with training values. Regression analysis between test and predicted value from neural network shows least error. This approach helps in the reduction of the experimentation required to determine the smoke and NO$_{x}$ for the catalyst coated filters.